

Year 9 2024 Mathematics 2025 Unit 11 Booklet

HGS Maths

Tasks

Dr Frost Course

Name:

Class:

Contents

- 1 <u>Fraction Arithmetic</u>
- 2 <u>Highest Common Factor and Lowest Common Multiple</u>
- 3 <u>Standard Form</u>
- 4 <u>Types of Numbers</u>
- 5 Multiplying and Simplifying Surds
- 6 Angles in Polygons

1 Fraction Arithmetic

Extra Notes

2 Highest Common Factor and Lowest Common Multiple

Worked Example	Your Turn	
Find the HCF and LCM of $2^2 \times 3^2 \times 5^2 \times 11$ $2^3 \times 3 \times 5^2 \times 7$	Find the HCF and LCM of $2 \times 3^3 \times 5 \times 7^2$ $2^2 \times 3^2 \times 7^2 \times 11$	

Worked Example	Your Turn	
Find the HCF and LCM of 123 and 456	Find the HCF and LCM of 321 and 654	

	Fill in the Gaps							
	а	b	p.p.f. for a	p.p.f. for b	HCF p.p.f	HCF	LCM p.p.f	LCM
1	. 20	8	$2^2 \times 5$	2 ³	2 ²	4	$2^{3} \times 5$	40
2	. 20	16						
3	200	16						
4	200				2×5		$2^{3} \times 5^{2}$	
5	21	7						
6	. 22	7						
7	. 23	7						
8			$2 \times 5 \times 13$	2×5^2				
9		15				3		405
10	. 8				1		2 ³	
11	. 1	100						
12	. 16	81						
13			$2^{3} \times 5$	$3^2 \times 11$				
14						12		180
15	x^2y	xy^2	$x^2 \times y$	$x \times y^2$				
16			$a \times b^2 \times c^3$	$b \times c^2 \times d$				

Your Turn
Find the HCF and LCM of 321 and 654 and 987

Worked Example	Your Turn
The HCF of two numbers is 6. The LCM of two numbers is 60. Write down two possible numbers.	The HCF of two numbers is 3. The LCM of two numbers is 36. Write down two possible numbers.

Worked Example	Your Turn
Worked Example The HCF of two numbers is 5. The LCM of two numbers is a multiple of 12. Write down two possible numbers.	Your Turn The HCF of two numbers is 8. The LCM of two numbers is a multiple of 5. Write down two possible numbers.

Worked Example	Your Turn
Worked Example Two strings of different lengths, 240 cm and 318 cm are to be cut into equal integer lengths. What is the greatest possible length of each piece?	Your Turn Two strings of different lengths, 212 cm and 360 cm are to be cut into equal integer lengths. What is the greatest possible length of each piece?

Worked Example	Your Turn
Worked Example Two lighthouses flash their lights every 240 s and 318 s respectively. They both flash at the same time. After how many seconds will they next both flash at the same time.	Your Turn Two lighthouses flash their lights every 212 s and 360 s respectively. They both flash at the same time. After how many seconds will they next both flash at the same time.

Worked Example	Your Turn
Worked Example Mary is organising a charity hot dog sale. There are 312 bread rolls in each packet. There are 276 hot dogs in each packet. Mary buys exactly the same number of bread rolls as hot dogs. What is the smallest number of each packet that Mary can buy?	Your Turn Mary is organising a charity hot dog sale. There are 465 bread rolls in each packet. There are 195 hot dogs in each packet. Mary buys exactly the same number of bread rolls as hot dogs. What is the smallest number of each packet that Mary can buy?

Extra Notes

3 Standard Form

Standard form is written in the form of $a \times 10^n$, where a is a number bigger than or equal to 1 and less than 10 (i.e. $1 \le a < 10$). n can be any positive or negative whole number.

Note: *a* can be any positive or negative number.

In Standard Form	Not in Standard Form		
7.3×10^{3}	438,000		
1×10^{-3}	54×10^{7}		
9.36×10^{18}	$0.6 imes 10^{-4}$		
4×10^{1}	389×10000		
5.002×10^{-7}	$6 \times 10^{1.5}$		
-1.729×10^{211}	0.000372		

Why use standard form?

- It allows us to write really small or really big numbers concisely.
- It allows us to easily compare small and big numbers.

Intelligent Practice		
Decide if the following numbers ar	e in standard form	
3×10^{5}	3×-10^{5}	
3×10^{6}	$3 \times (-10)^5$	
3×10^{67}	$3 \div 10^5$	
$3 \times 10^{6.7}$	$3 + 10^5$	
$3 \times 10^{0.67}$	$3 - 10^5$	
$3 \times 10^{0.7}$	$4 imes 10^5$	
3×10^{7}	40×10^{5}	
3×10^{-7}	$46 imes 10^5$	
$3 \times 10^{-0.7}$	$4.6 imes 10^{5}$	
3×11^5	$0.46 imes 10^5$	
3×100^{5}	$3.46 imes 10^{5}$	
3×10.5^{5}	3.46434561×10^5	
3×10.5^{5}	$-3.46434561 \times 10^{5}$	

Fill in the Gaps

10 ⁶	1 000 000	10 x 10 x 10 x 10 x 10 x 10 x 10	7
10 ⁵			first.
10 ⁴			ıis part
10 ³		10 x 10 x 10	Complete this part first.
10 ²			Comj
10 ¹	10		J
			٦
10 ⁻¹			sumu
		$\frac{1}{10} \times \frac{1}{10}$	the col
	<u>1</u> 1000		erns in blete th
10 ⁻⁴			Look for patterns in the columns to complete the table.
			Look f tc
			J

Worked Example	Your Turn
Write the following numbers in standard form	Write the following numbers in standard form
a) 70,000	a) 63,000
b) 72,000	b) 630,000
c) 720,000	c) 60,000
d) 722 million	d) 633 thousand

Write the following numbers in standard formWrite the following numbers in standard forma)0.05b)0.00572d)572 thousandths		Worked Example	Your Turn
	a) b) c)	ite the following numbers in standard form 0.05 0.005 0.00572	Write the following numbers in standard form a) 0.006 b) 0.00683 c) 0.06

	Worked Example	Your Turn
Wri a) b)	Worked Example ite the following numbers in standard form 4367 × 10 ⁶ 0.125 × 10 ⁻⁶	Your TurnWrite the following numbers in standard forma) 0.4367×10^6 b) 125×10^{-6}

Worked Example	Your Turn
Worked Example Write the following as an ordinary number a) 3.1×10^6 b) 4.1×10^{-6}	Your TurnWrite the following as an ordinary numbera) 3.2×10^7 b) 4.2×10^{-7}

Worked Example	Your Turn
Put the following numbers in ascending order: 5.77×10^{6} 8.85×10^{6} 6,350,000 2.6×10^{5} 3.9×10^{5}	Put the following numbers in ascending order: 1.2×10^{6} 8.4×10^{7} 8.7×10^{6} 7,000,000 3.04×10^{7}

Worked Example	Your Turn
Put the following numbers in ascending order: 3.8×10^{-3} 5.7×10^{-4} 1.81×10^{-2} $0.000\ 238$	Put the following numbers in ascending order: 3.22×10^{-4} 7.29×10^{-2} 0.003 7 1.1×10^{-3}

Worked Example	Your Turn
Put the following numbers in ascending order, starting with the smallest:	Put the following numbers in ascending order, starting with the smallest:
500,000 9.39×10^{-4} 7.2×10^{-4}	82,900 9,470,000 8.16×10^4
$\begin{array}{c} 0.0024 \\ 1.6 \times 10^4 \end{array}$	0.00842 4.59×10^{-2}

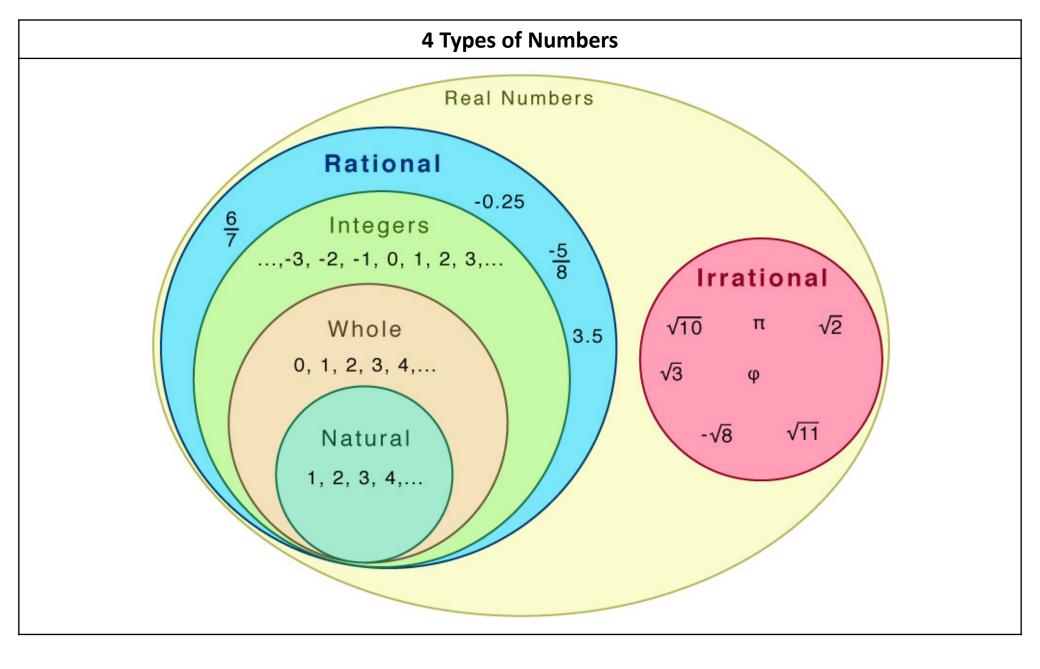
Worked Example	Your Turn
Worked Example Work out a) $(3 \times 10^5) \times (2 \times 10^4)$ b) $(3 \times 10^{-5}) \times (2 \times 10^{-4})$	Your Turn Work out a) $(2 \times 10^3) \times (4 \times 10^5)$ b) $(2 \times 10^{-4}) \times (4 \times 10^{-5})$

Worked Example	Your Turn
Work out a) $(3 \times 10^5) \times (6 \times 10^4)$ b) $(3 \times 10^{-5}) \times (6 \times 10^{-4})$ c) $(3 \times 10^5) \times (6 \times 10^{-4})$	Work out a) $(6 \times 10^3) \times (4 \times 10^5)$ b) $(6 \times 10^{-3}) \times (4 \times 10^{-5})$ c) $(6 \times 10^{-3}) \times (4 \times 10^5)$

Worked Example	Your Turn
Worked Example Work out a) $(4 \times 10^9) \div (2 \times 10^3)$ b) $(4 \times 10^{-9}) \div (2 \times 10^{-3})$	Your Turn Work out a) $(8 \times 10^6) \div (2 \times 10^3)$ b) $(8 \times 10^{-6}) \div (2 \times 10^{-3})$

Worked Example	Your Turn
Worked Example Work out a) $(2 \times 10^9) \div (4 \times 10^3)$ b) $(2 \times 10^{-9}) \div (4 \times 10^{-3})$ c) $(2 \times 10^{-9}) \div (4 \times 10^3)$	Your runn Work out a) $(2 \times 10^6) \div (8 \times 10^{-3})$ b) $(2 \times 10^6) \div (8 \times 10^{-3})$ c) $(2 \times 10^6) \div (8 \times 10^{-3})$

Worked Example	Your Turn
Worked Example Work out a) $(3 \times 10^4) + (4 \times 10^4)$ b) $(3 \times 10^4) + (8 \times 10^4)$ c) $(3 \times 10^5) + (8 \times 10^4)$	Four runn Work out a) $(3 \times 10^7) + (2 \times 10^7)$ b) $(3 \times 10^7) + (9 \times 10^7)$ c) $(3 \times 10^8) + (9 \times 10^7)$


Worked Example	Your Turn
Worked Example Work out a) $(7 \times 10^4) - (4 \times 10^4)$ b) $(7 \times 10^4) - (0.4 \times 10^4)$ c) $(7 \times 10^5) - (0.4 \times 10^4)$	Work out a) $(6 \times 10^7) - (2 \times 10^7)$ b) $(6 \times 10^7) - (0.2 \times 10^7)$ c) $(6 \times 10^7) - (0.2 \times 10^8)$

Worked Example	Your Turn
Worked Example a) $(4 \times 10^{-1}) + (3 \times 10^{-2})$ b) $(7 \times 10^{-3}) - (2 \times 10^{-4})$	Your Turn Work out a) $(8 \times 10^{-2}) + (2 \times 10^{-3})$ b) $(2 \times 10^{-2}) - (5 \times 10^{-3})$

Worked Example	Your Turn
$ \frac{\text{Calculate}}{(4.6 \times 10^4) + (1.5 \times 10^3)}{(2 \times 10^2)} $	$\frac{\text{Calculate}}{(4.5 \times 10^4) + (1.3 \times 10^2)}{(2 \times 10^2)}$

	Fill in the Gaps											
able using numbers.	50%					3 × 10 ⁻³						
Complete the table using standard form numbers.	20%							8.6 × 10 ⁻⁶	of 9 × 10 ⁴ =	d) 2% of $1.7 \times 10^7 =$	of 9 × 10 ⁶ =	
_	10%			3 × 10 ²					b) 30% of	d) 2% o	f) 120% of	
Percenta	5%						7.5 × 10 ⁰					
Standard Form: Percentages	1%				1 × 10 ⁶				6 × 10 ⁹ =	5 × 10 ⁷ =	1 × 10 ⁻³ =	
Standa	100%	4 × 10 ⁵	8 × 10 ⁷						a) 20% of	c) 90% of	e) 75% of 1×10 ⁻³	

Extra Notes				

Classify each number below as either rational or irrational. If you believe your number is rational, prove your answer by writing it as a fraction. The first one is done for you.

Fraction?	$\frac{8}{10}$ Or $\frac{4}{5}$									
Rational or Irrational?	Rational									
	1) 0.8	2) $-\frac{3}{10}$	3) $\sqrt{40}$	4) $\sqrt{81}$	5) $2\frac{1}{3}$	6) 0.35	7) 0.33333	8) —9	9) 3.4	10) $\sqrt{2}$

Directions: For each number shown, classify it as either rational or irrational, then tell whether or not it is terminating or repeating.

ne) (circle one)	terminatin	irrational terminating, repeating, or neither	irrational terminating, repeating, or neither	irrational terminating, repeating, or neither	
circle one)	ori	or	ori	ori	•
(cin	rational or irrational	rational or irrational	rational or irrational	rational or irrational	
	-0.6	12) $\sqrt{100}$	2 5	3 2	
	11) -0.6	12)	13)	14)	Ĺ

Fluency Practice

Extra Notes

5 Multiplying and Simplifying Surds

A surd is an expression that includes a square root, cube root or other root symbol. Surds are used to write irrational numbers precisely – because the decimals of irrational numbers do not terminate or recur, they cannot be written exactly in decimal form.

Surds	Not Surds
$\sqrt{8}$	8
$\sqrt{10}$	-12.05
$\sqrt{91}$	0.62
³ √7	$\frac{3}{7}$
³ √16	$7\frac{1}{2}$
4√73	$\sqrt{16}$
$2\sqrt{2}$	$\sqrt{25}$
$2 + \sqrt{5}$	³ √8
$(2+\sqrt{5})(3+\sqrt{5})$	$\sqrt{2.25}$
$\frac{1}{5-\sqrt{17}}$	$\frac{\sqrt{100}}{\sqrt{4}}$

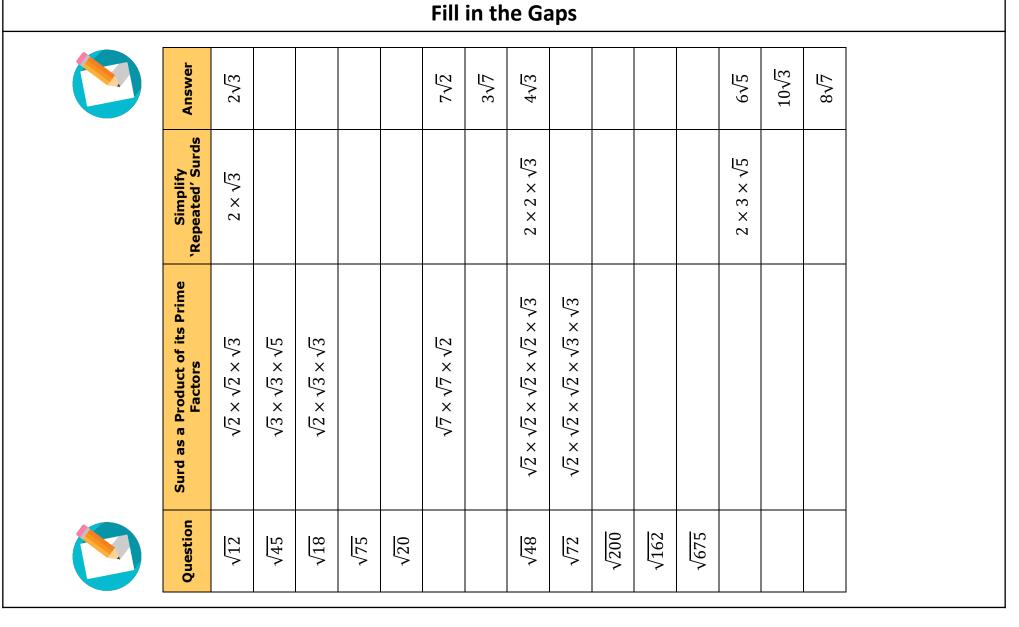
Intelligent Practice								
Decide if the following numbers are surds	1	$\sqrt{0.25}$						
$\sqrt{1}$	$\frac{1}{\left(\sqrt{5}\right)^2}$	$\sqrt{0.125}$						
$\sqrt{4}$	$\frac{\sqrt{1}}{\sqrt{4}}$	$\sqrt{0.01}$						
$\sqrt{9}$	_	$\left(\sqrt{2}\right)^2$						
$\sqrt{36}$	$\sqrt{\frac{1}{4}}$	$\left(\sqrt{2}\right)^3$						
$\sqrt{6}$	2	$\sqrt{2}(\sqrt{2}+3)$						
$\sqrt{24}$	$\sqrt{\frac{2}{8}}$	$(\sqrt{2}+3)(\sqrt{2}-3)$						
$\sqrt{3}$	$\sqrt{\frac{2}{9}}$							
$2\sqrt{3}$	$\sqrt{9}$	$\frac{2}{\sqrt{2}}\sqrt{2}$						
$3\sqrt{3}$	$\sqrt{\frac{4}{9}}$	$\frac{2}{3+\sqrt{2}}$						
$3\sqrt{4}$	$\sqrt{9}$							
$\sqrt{5}$	$\frac{2}{\sqrt{9}}$	$\frac{2}{\frac{3}{\sqrt{2}} + \sqrt{2}}$						
$\sqrt{5^2}$	$\frac{2}{\sqrt{9}}$ $\frac{\sqrt{7}}{2}$							

Question	As a decimal or whole number	Is it a surd?	Question	As a decimal or whole number	Is it a surd?
$\sqrt{1}$	Ţ	No	$\sqrt{16}$		
$\sqrt{2}$	1.4142135	Yes	$\sqrt{17}$		
<u>√3</u>	1.7320508	Yes	$\sqrt{18}$		
$\sqrt{4}$	2	No	$\sqrt{19}$		
√5			$\sqrt{20}$		
<u>√6</u>			$\sqrt{21}$		
<u>√7</u>			$\sqrt{22}$		
<u>√8</u>			$\sqrt{23}$		
<u>49</u>			$\sqrt{24}$		
$\sqrt{10}$			√ <u>25</u>		
$\sqrt{11}$			<u>√26</u>		
$\sqrt{12}$			$\sqrt{27}$		
$\sqrt{13}$			√ <u>28</u>		
$\sqrt{14}$			√ <u>29</u>		
$\sqrt{15}$			$\sqrt{30}$		

Purposeful Practice

	Worked Example	Your Turn
a) b)	nplify: $5 \times \sqrt{6}$ $\sqrt{5} \times \sqrt{6}$	Your TurnSimplify: a) $\sqrt{5} \times \sqrt{7}$ b) $\sqrt{7} \times 5$ c) $3\sqrt{5} \times 2\sqrt{7}$

Worked Example	Your Turn
Simplify	Simplify
a) $\sqrt{60}$ b) $\sqrt{120}$	a) $\sqrt{50}$ b) $\sqrt{200}$
b) $\sqrt{120}$	b) v200


Fill in the Gaps																	
	1 100	Answer	3√ <u>3</u>												$3\sqrt{7}$	7√3	
	49 64 81	Rationalise the Square Number	$3 \times \sqrt{3}$												$3 \times \sqrt{7}$		
	16 25 36	Split into Two R Surds Sc	$\sqrt{9} \times \sqrt{3}$	$\sqrt{4} \times \sqrt{6}$											$\sqrt{9} \times \sqrt{7}$		
	1 4 9	Largest Square Number Factor	6	4	25												
	Square Numbers	Question	$\sqrt{27}$	$\sqrt{24}$	$\sqrt{50}$	$\sqrt{28}$	$\sqrt{32}$	$\sqrt{45}$	$\sqrt{72}$	<u>06</u> /	$\sqrt{75}$	$\sqrt{200}$	$\sqrt{98}$	$\sqrt{80}$			

Worked Example	Your Turn
Simplify	Simplify
a) $2\sqrt{20}$	a) $3\sqrt{20}$
b) $4\sqrt{40}$	b) $4\sqrt{50}$


Worked Example	Your Turn
Worked ExampleSimplify:a) $\sqrt{3} \times \sqrt{6}$ b) $4\sqrt{3} \times 5\sqrt{6}$	Your TurnSimplify: a) $\sqrt{3} \times \sqrt{8}$ b) $7\sqrt{3} \times 2\sqrt{8}$

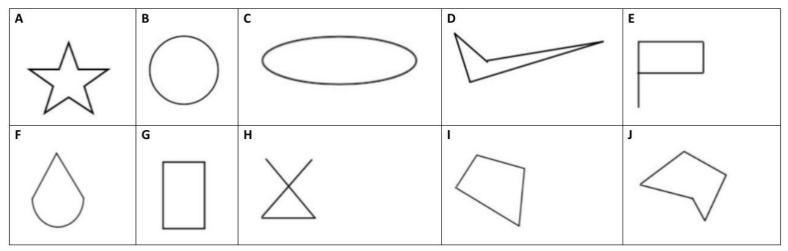
Worked Example	Your Turn
Worked ExampleSimplifya) $\sqrt{6} \times \sqrt{6}$ b) $(\sqrt{6})^2$ c) $(2\sqrt{6})^2$ d) $2(\sqrt{6})^2$ e) $2(\sqrt{6})^3$	Your TurnSimplify a) $\sqrt{7} \times \sqrt{7}$ b) $(\sqrt{7})^2$ c) $(2\sqrt{7})^2$ d) $2(\sqrt{7})^2$ e) $2(\sqrt{7})^3$

Worked Example	Your Turn
Simplify $\sqrt{504}$	Simplify $\sqrt{756}$

	Worked Example	Your Turn
Wr a) b)	Worked Exampleite the following as a single root $2\sqrt{15}$ $2\sqrt{30}$	Your TurnWrite the following as a single roota) $5\sqrt{2}$ b) $10\sqrt{2}$

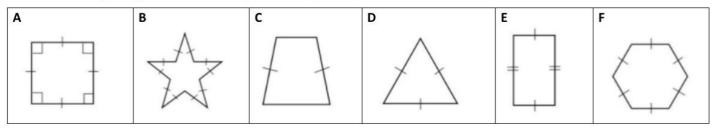
Extra Notes	

6 Angles in Polygons	

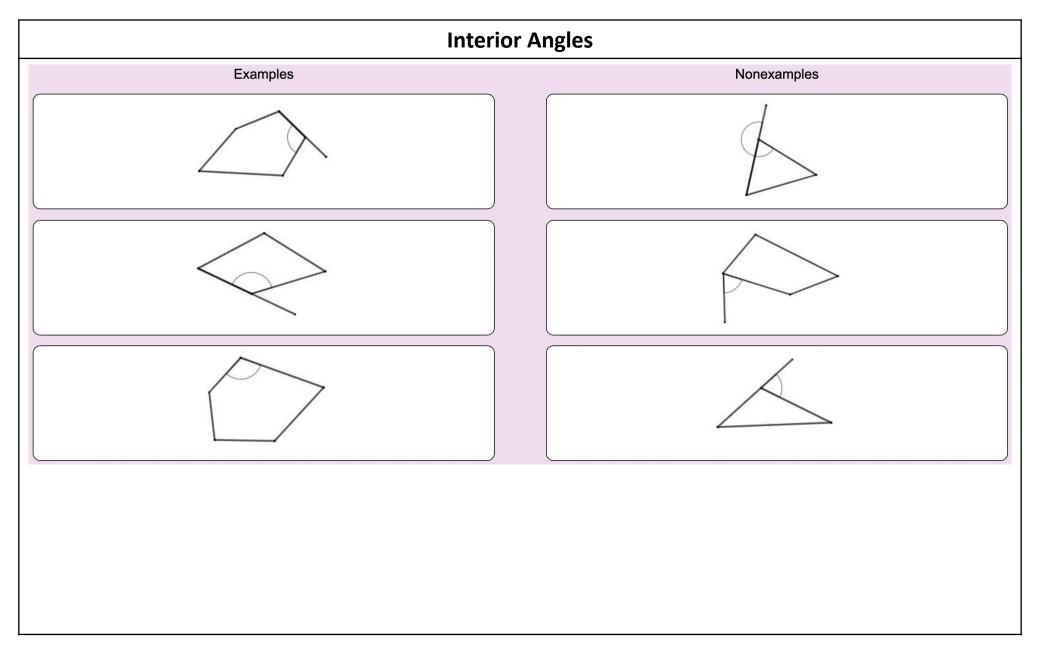

Frayer Model – Polygons		
Definition	<u>Characteristics</u>	
Examples	Non-Examples	

Frayer Model – Regular Polygons	
Definition	Characteristics
<u>Examples</u>	Non-Examples

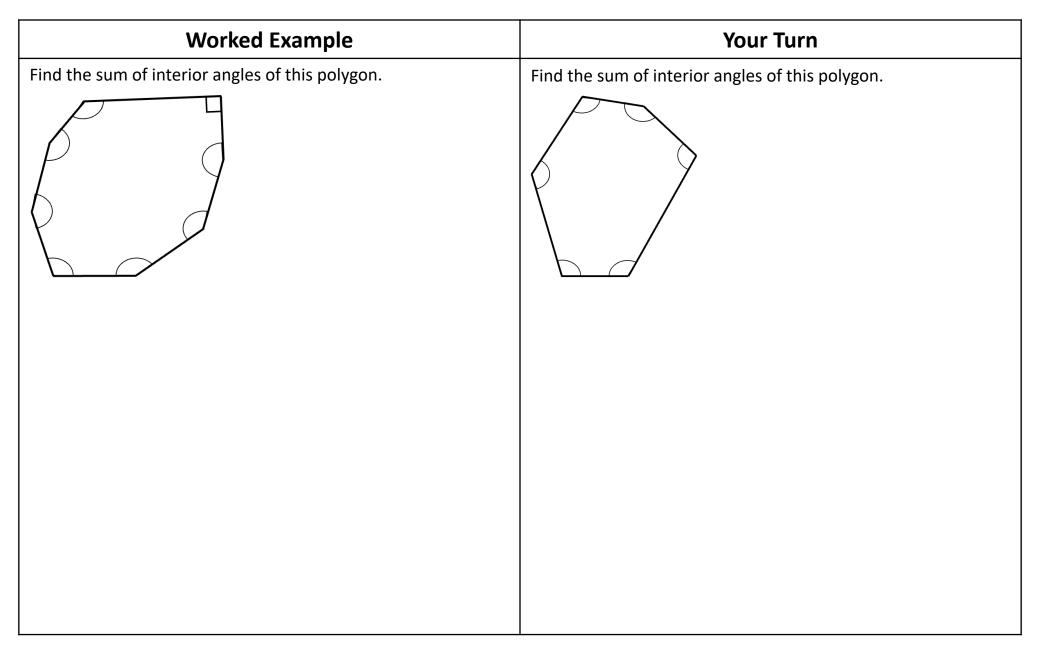
Fluency Practice

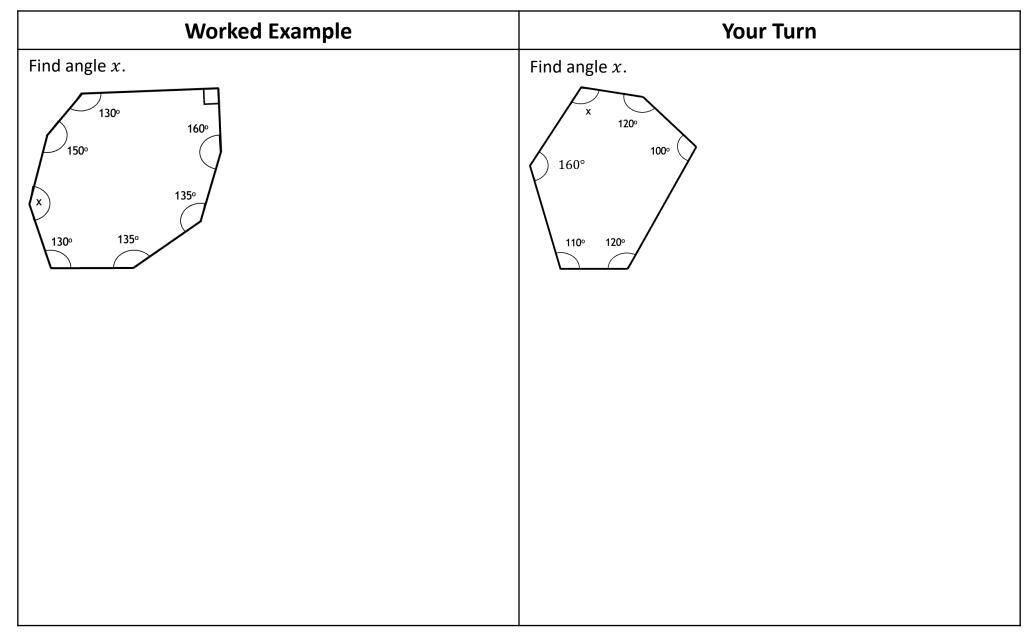

Polygons – Example or Non-Example

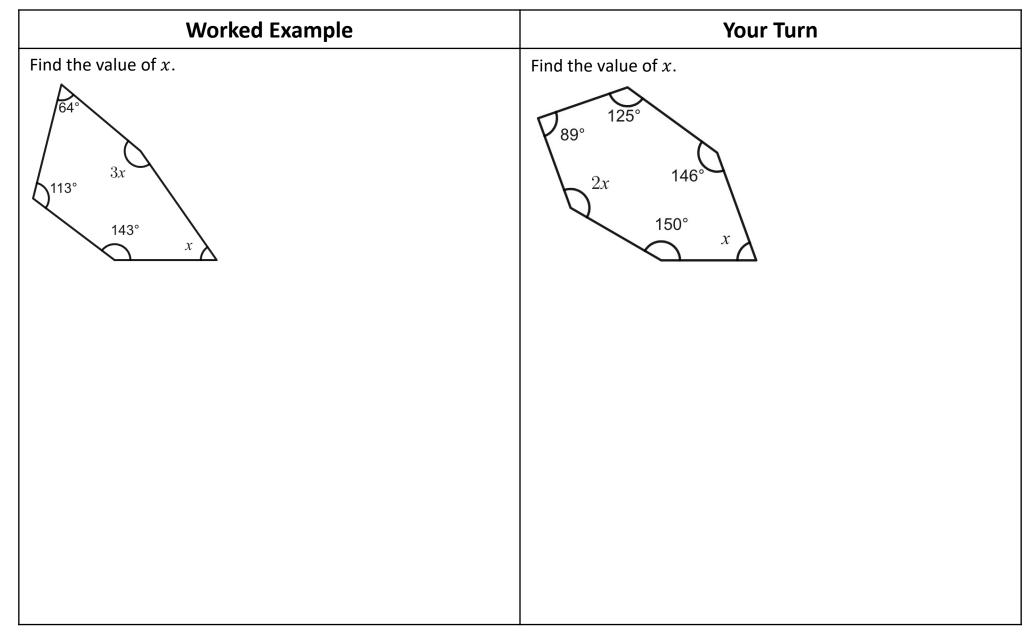
In each of the following diagrams decide whether the shape is a polygon or not. Label them 'Example' or 'Non-example'. For those that ARE polygons, give the name of the polygon.



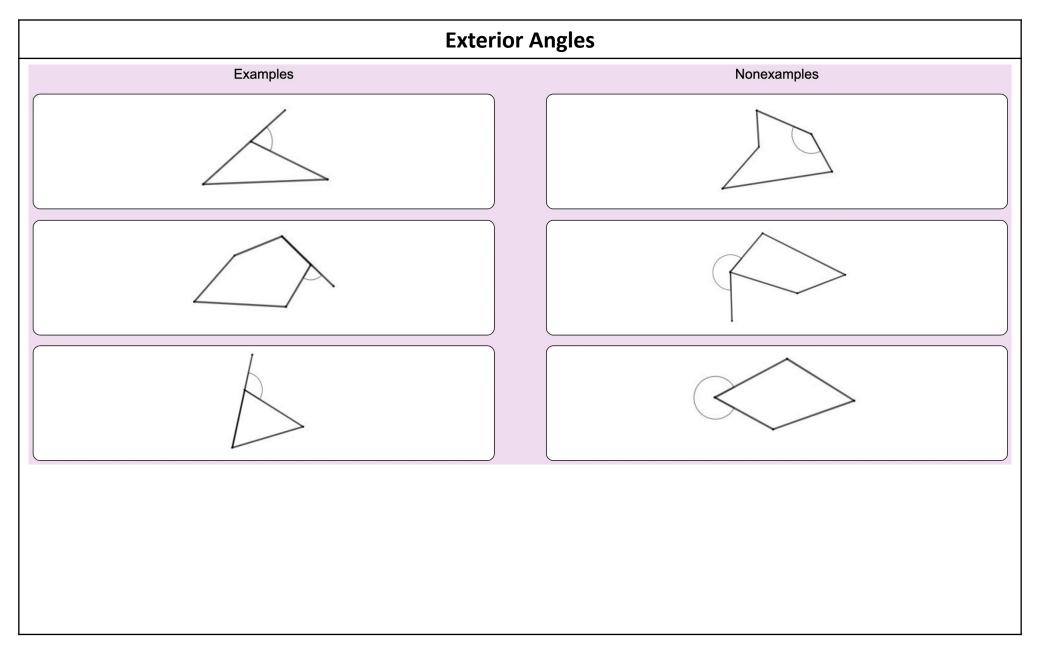
Polygons – Regular or Irregular

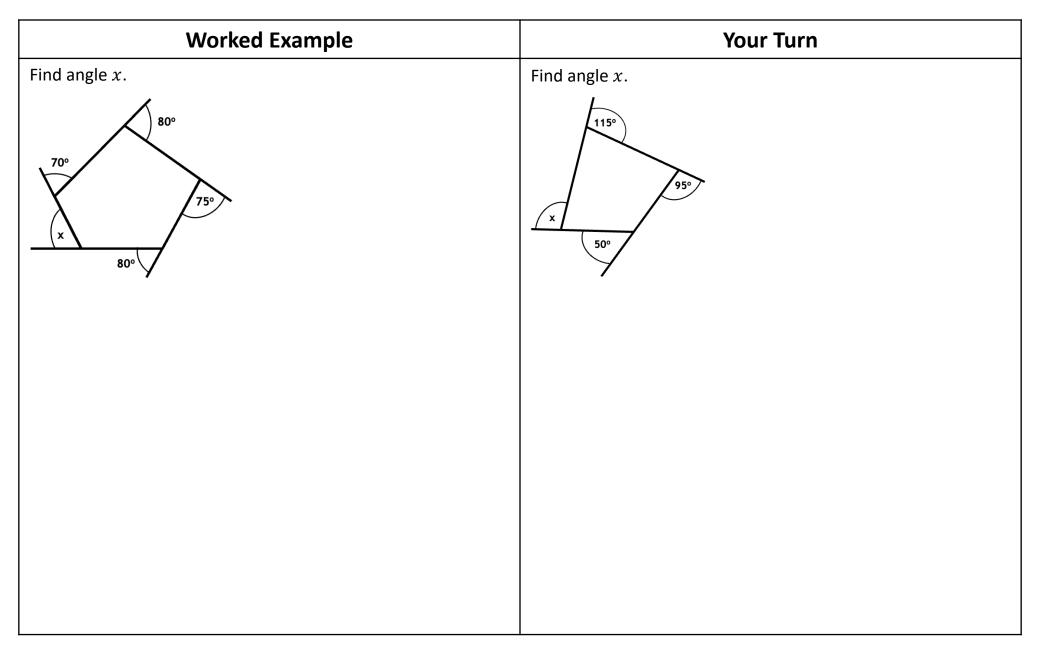

Which of the following are regular and which are irregular - how do you know?

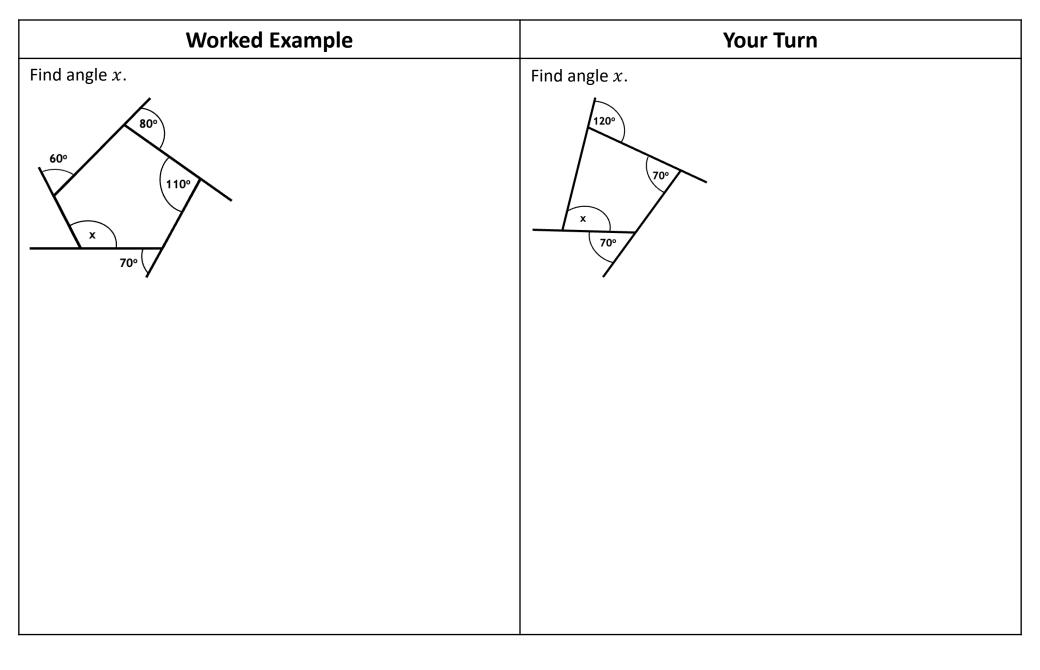



Interior and Exterior Angle Formulae		
All Polygons	Regular Polygons	
Interior Angle + Exterior Angle = 180°	Each Exterior Angle = $\frac{360^{\circ}}{n}$	
Sum of Interior Angles = $(n - 2) \times 180^{\circ}$		
Sum of Exterior Angles = 360°	Each Interior Angle = $180^{\circ} - \frac{360^{\circ}}{n}$	

Worked Example	Your Turn
Find the sum of the interior angles of a polygon with 30 sides.	Find the sum of the interior angles of a polygon with 60 sides.






Worked Example	Your Turn
Worked Example The sum of the interior angles of a polygon is 3240°. How many sides does the polygon have?	Your Turn The sum of the interior angles of a polygon is 6840°. How many sides does the polygon have?

Fill in the Gaps

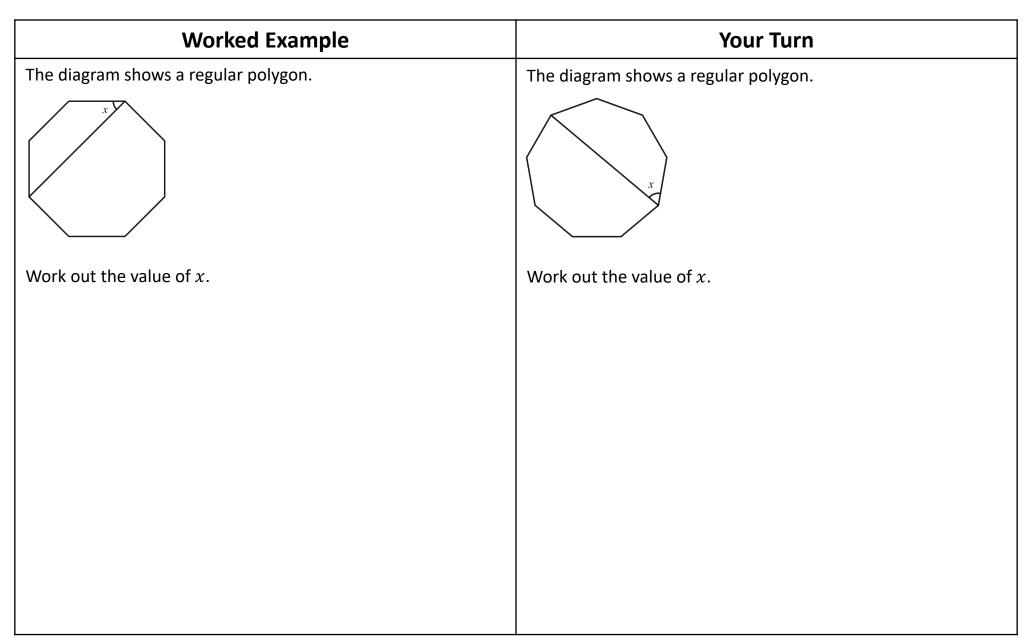
Number of sides	Sum of interior angles	Size of one interior angle in a regular polygon
3	180°	
	360°	
7		
9		
10		144°
	1800°	150°
13	1980°	
14		
	2700°	

Worked Example	Your Turn
Worked Example A regular polygon has 12 sides. Find the size of each exterior angle.	Your Turn A regular polygon has 48 sides. Find the size of each exterior angle.

Worked Example	Your Turn
Worked Example A regular polygon has 12 sides. Find the size of each interior angle.	Your Turn A regular polygon has 48 sides. Find the size of each interior angle.

Worked Example	Your Turn
Worked Example The interior angle of a regular polygon is 160°. How many sides does the polygon have?	Your Turn The interior angle of a regular polygon is 140°. How many sides does the polygon have?

Worked Example	Your Turn
A section of a two different regular polygons are show below. How many sides do they each have?	A section of a two different regular polygons are show below. How many sides do they each have?
120	40
175°	150°


Worked Example	Your Turn
Worked Example The interior angle of a regular polygon is 160°. How many sides does the polygon have?	Your Turn The interior angle of a regular polygon is 140°. How many sides does the polygon have?

		Fill in the Gaps		
Name	Number of Angles	Sum of Interior Angles	Size of One Interior Angle in a Regular Polygon	Size of One Exterior Angle in a Regular Polygon
	3			
		360°	90°	
Octagon				45°
Hexadecagon		2520°		
Pentadecagon	15		156°	
				72°
		720°	120°	
	12			
		1620°		$\frac{360^{\circ}}{11}$

Worked Example	Your Turn
Worked Example The size of each interior angle of a regular polygon is 9 times the size of each exterior angle. How many sides does the polygon have?	Your Turn The size of each interior angle of a regular polygon is 11 times the size of each exterior angle. How many sides does the polygon have?

Worked Example	Your Turn
These are regular polygons. Find x.	These are regular polygons. Find <i>x</i> .

Worked Example	Your Turn
The diagram shows a regular octagon and a regular pentagon. A quadrilateral is formed by extending sides of the two regular polygons.	The diagram shows a regular hexagon and a regular octagon. A quadrilateral is formed by extending sides of the two regular polygons.
Find the value of <i>x</i> .	Find the value of <i>x</i> .

Your Turn
The diagram shows A , an equilateral triangle, B , a regular dodecagon, and part of another polygon.
Find the number of sides of the third polygon.

Extra Notes