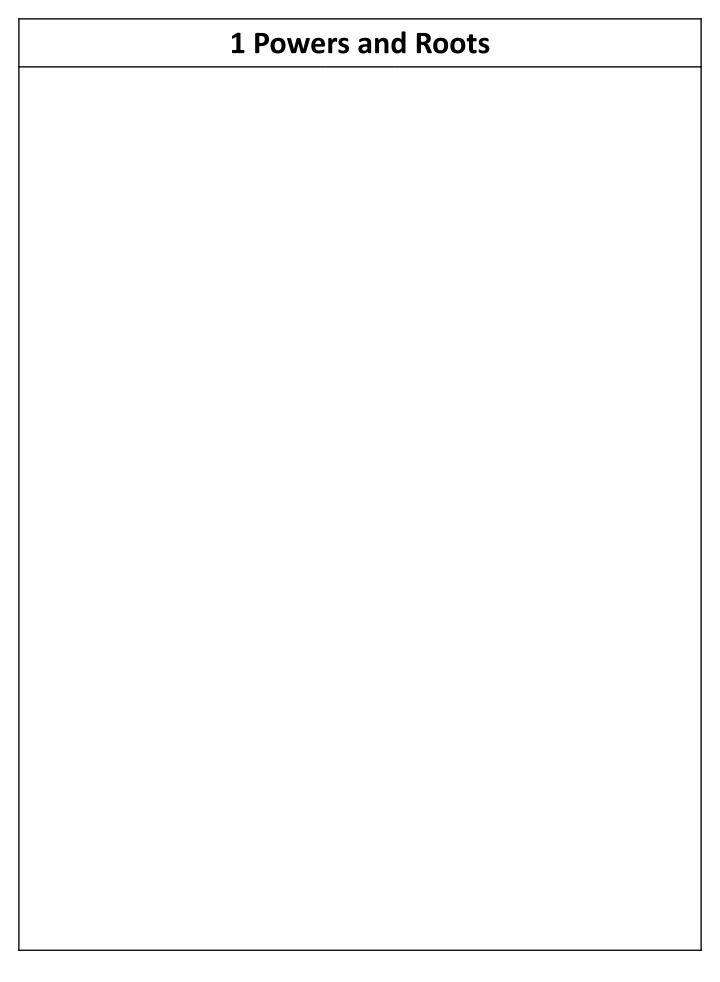


Year 7 2024 Mathematics 2025 Unit 2 Booklet

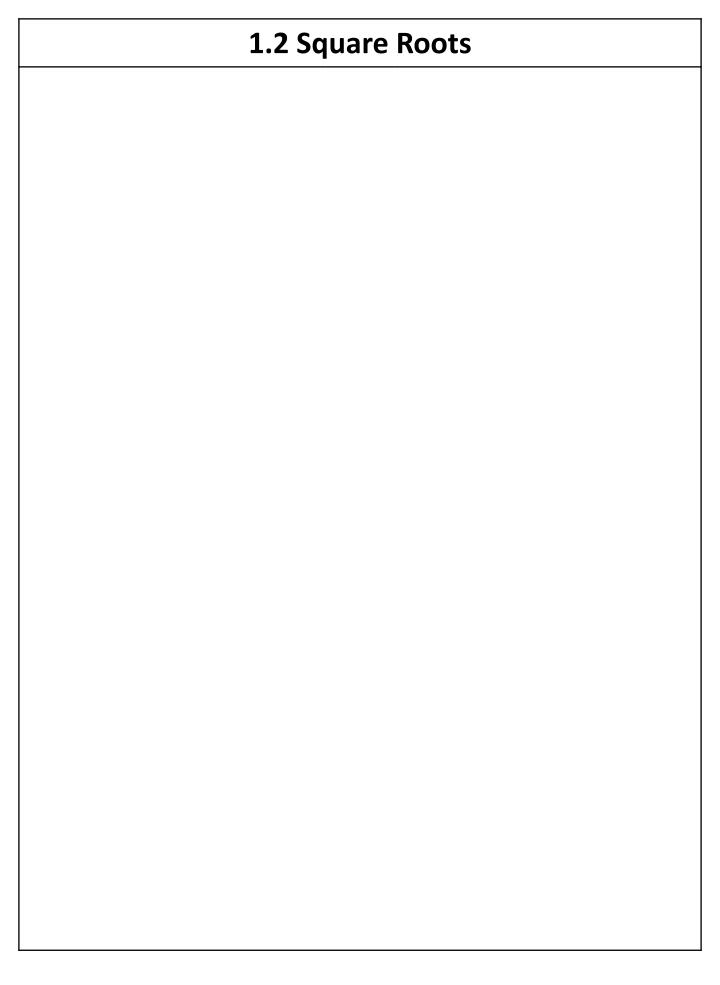
HGS Maths

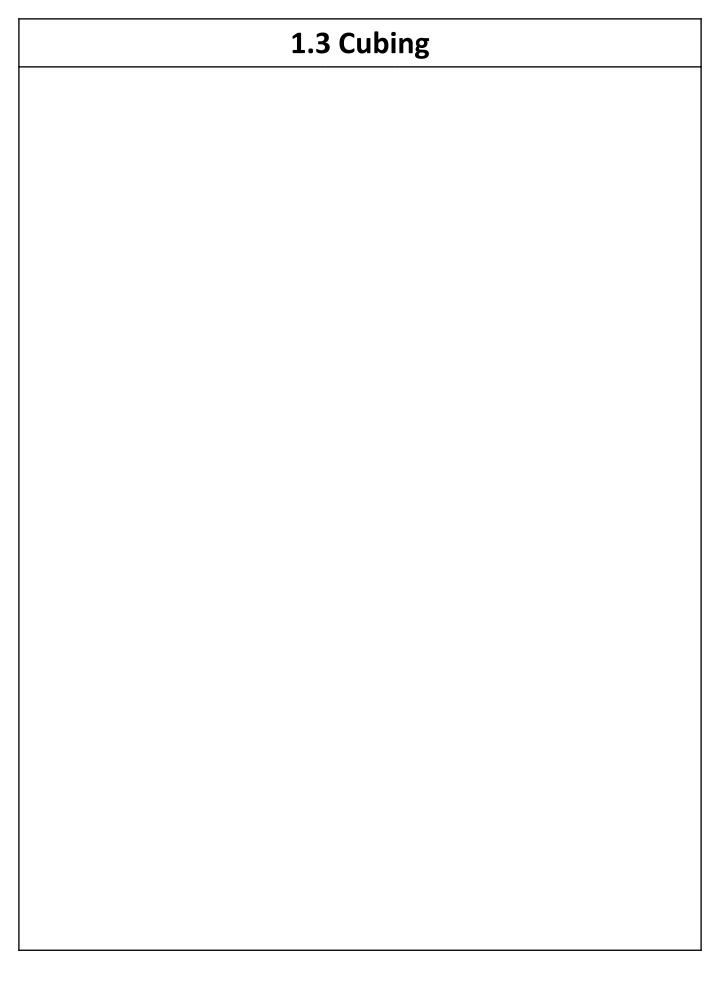
Tasks


Dr Frost Course

Name:										

Class: _____


	Contents
1	Powers and Roots
1.1	Squaring
1.2	Square Roots
1.3	Cubing
1.4	<u>Cube Roots</u>
1.5	<u>Notation</u>
1.6	<u>Powers</u>
1.7	Roots
2	Order of Operations
	Order of Operations
2.1	Commutativity
2.2	Moving Numbers Around
2.3	Mixing the Four Operations
2.4	Exponentiation
2.5	Brackets
3	Introduction to Algebra
2.4	
3.1	Forming Expressions Conventions and Definitions
3.2 3.3	Conventions and Definitions Collecting Like Torms without Powers
3.4	Collecting Like Terms without Powers Collecting Like Terms with Powers
3.5	Algebraic Notation
3.6	Multiplying Terms without Powers
3.7	Multiplying Terms with Powers
3.8	Dividing Terms without Powers
3.9	Dividing Terms with Powers
3.10	Substitution


1.1 Squaring

Worked Example										Your Turn									
	V	No	rke	ed	Exa	am	ple	e	_				Yo	ur	Tu	rn			
a)				as a		-		atio	n	a) Write 8 ² as a multiplication and then work it out									
b)	b) Use a calculator to work out 2.11^2										b) Use a calculator to work out 31.7^2								
c)	Work out the value of $(-5)^2$										W	ork	out	the	e va	lue	of ([-8])2

We Write		W	e Say	We Calculate
3 ²	3 squared	or	3 to the power of 2	$3 \times 3 = 9$
5 ²		or	5 to the power of 2	
2^2	2 squared	or		
	1 squared	or	1 to the power of 2	
$(-4)^2$		or		
		or		$-3 \times -3 = 9$
		or		

Worked Example	Your Turn
a) Work out $\sqrt{25}$	a) Work out $\sqrt{64}$
b) Use a calculator to work out $\sqrt{4.4521}$	b) Use a calculator to work out $\sqrt{1004.89}$


	Worked Example												Yo	ur	Tu	rn			
a)			4 ³ hen			-		atio	n	a) Write 8 ³ as a multiplication and then work it out									
b)	b) Use a calculator to work out 2.11 ³										b) Use a calculator to work out 31.7^3								ıt
c)	c) Work out the value of $(-4)^3$										W	ork	out	the	e va	lue	of (-8)3

We Write		W	e Say	We Calculate
4 ³	4 cubed	or	4 to the power of 3	4×4×4 = 64
2 ³		or	2 to the power of 3	
6 ³	6 cubed	or		
	10 cubed	or	10 to the power of 3	
$(-4)^3$		or		
		or		$-3 \times -3 \times -3$ $= -27$
		or		

1.4 Cube Roots

	Worked Example												Yo	ur	Tu	rn			
a)	W	ork (out	³ √64	-					a)	W	ork (out	√51	2				
b)	b) Use a calculator to work out $\sqrt[3]{9.393931}$									b) Use a calculator to work out $\sqrt[3]{31855.013}$									
c)	c) Work out the value of $\sqrt[3]{-64}$									c) Work out the value of $\sqrt[3]{-512}$									

1.5 Notation

3 is the exponent

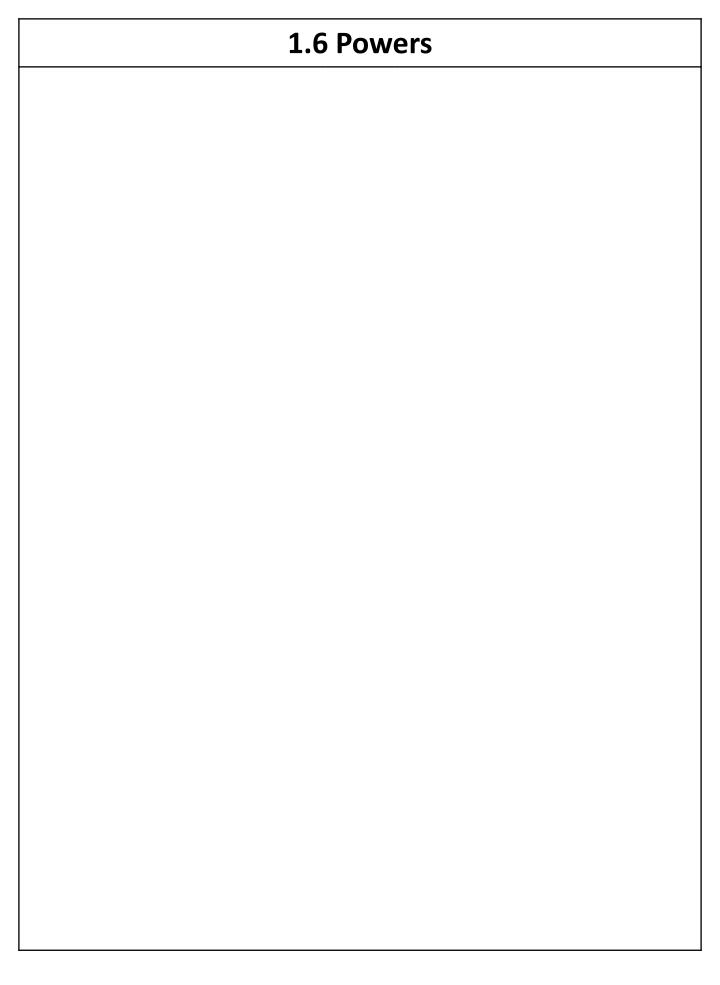
What we write

8²

83

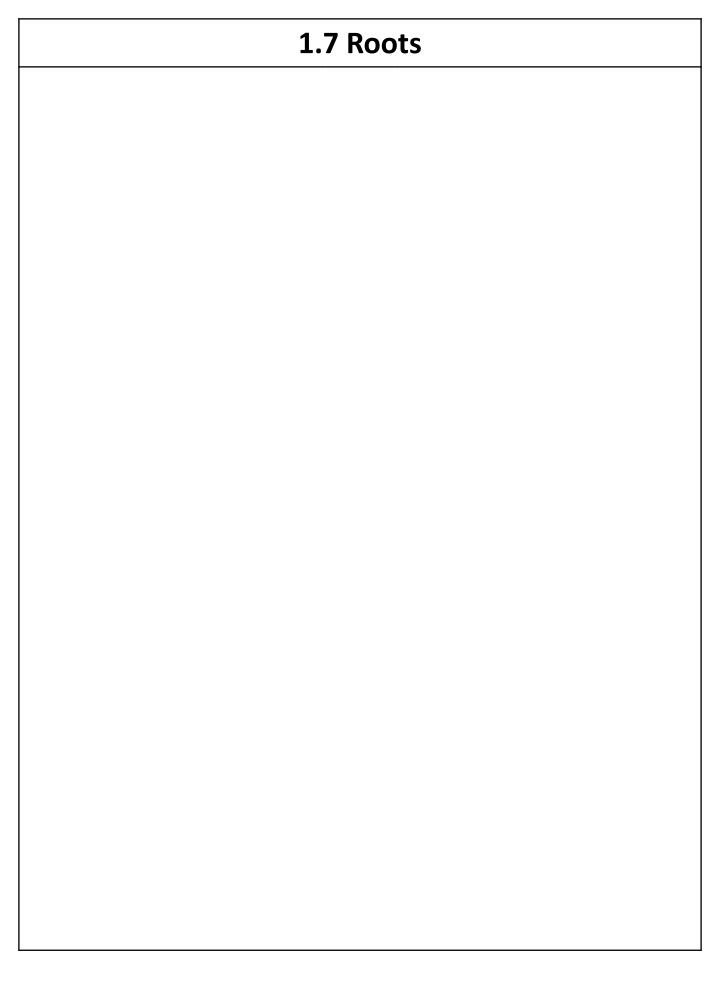
84

816 350 761.3

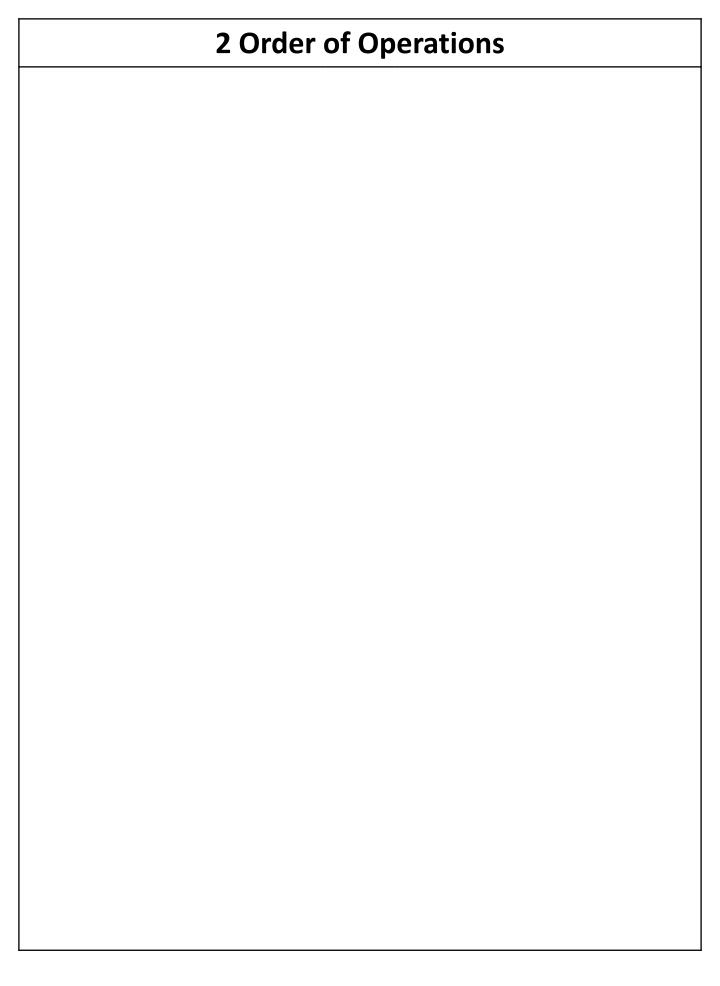

What we say

"Eight squared"

"Eight cubed"


"Eight to the power four"

"Eight to the power sixteen million three hundred and fifty thousand seven hundred and sixty one point three"



	Worked Example												Yo	ur	Tu	rn			
a)			3 ⁴ hen			-		atio	n	a) Write 2 ⁵ as a multiplication and then work it out									1
b) Use a calculator to work out 2.11^7										b) Use a calculator to work out 31.7^6								ıt	
c)	c) Work out the value of $(-3)^4$										W	ork	out	the	e va	lue	of (-2)5

We say	We write	We work out	Answer
2 to the power of 4	2^4	$2 \times 2 \times 2 \times 2$	
3 to the power of 4		$3 \times 3 \times 3 \times 3$	
	4 ⁴		256
5 to the power of 2			
	6 ⁵		7776
		$8 \times 8 \times 8 \times 8$	
		9 × 9 × 9	
	39		
10 to the power of 2			
2 to the power of 10			

	W	/ork	ed I	Exa	m	ple	9		Your Turn								
a)	Wo	rk out	t ⁴ √8	1					a) Work out $\sqrt[5]{32}$								
b)	b) Work out $\sqrt[6]{64}$							b) Work out $\sqrt[6]{729}$									
c)	c) Work out $\sqrt[5]{-243}$							c)	W	ork	out	5√ -	-32	-			

2.1 Commutativity

So far, we have studied three groups of operations.

	Multiplication	Addition	Exponentiation
Operation	$2 \times 3 = 6$ $2 \cdot 3 = 6$	2 + 3 = 5	$2^3 = 8$
Inverse Operation	$6 \div 3 = 2$ $\frac{6}{3} = 2$	5 - 3 = 2	$\sqrt[3]{8} = 2$

Commutativity

Which of the operations are commutative?

				Commutative?
tion	Multiplication	$2 \cdot 3 = 6$	$2 \cdot 3 = 3 \cdot 2$	Yes
Multiplication	Division	$\frac{6}{3} = 2$	$\frac{6}{3} \neq \frac{3}{6}$	No
Addition	Addition	2 + 3 = 5	2 + 3 = 3 + 2	Yes
Addi	Subtraction	5 - 3 = 2	$5 - 3 \neq 3 - 5$	No
ntiation	Exponents	$2^2 = 8$	$2^3 \neq 3^2$	No
Exponentiation	Roots	$\sqrt[3]{8} = 2$	$\sqrt[3]{8} \neq \sqrt[8]{3}$	No

Notice how most operations are not commutative.

That means the order you write and work out matters.

It is only multiplication and addition where you can change the order of the inputs and not affect the output.

	Calculation	Order Reverse	Commutative?
e.g.	$5 \times 4 = 20$	$4 \times 5 = 20$	Yes
а	$12 \times 3 = 36$	3 × 12 =	
b	9 · 7 =		
С	$24 \div 6 = 4$	$6 \div 24 = 0.25$	
d	$\frac{3}{2} =$	$\frac{2}{3} =$	
е	15 + 19 =		
f	20 - 15 = 5	15 - 20 = -5	
g	6.5 + 1.2 =		
h	14 – 8 =		
i	$5^2 =$	$2^5 =$	
j	² √121	¹²¹ √2	
k	0.03 - 0.2 =		
I	³ √8 =		
m		$3^4 =$	
n		123 · 19 =	

2.2 Moving Numbers Around

What happens when we have more than two numbers in a calculation?

Which of these sums are the same?

$$9 + 8 + 25$$

$$25 + 8 + 9$$

$$9 + 25 + 8$$

$$8 + 25 + 9$$

What other sums would be the same?

Which of these differences are the same?

$$30 - 4 - 10$$

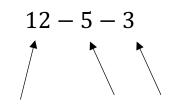
$$30 - 10 - 4$$

$$10 - 30 - 4$$

$$4 - 10 - 30$$

Why are the top two the same, but the bottom two different?

Key Words <u>summand</u> + <u>summand</u> = sum same word, you can change the order: $\underline{\text{multiplier}} \times \underline{\text{multiplier}} = \text{product}$ commutative minuend – subtrahend = difference different words, dividend – divisor = quotient you cannot change the order: not commutative


Subtraction

$$12-3-5$$

minuend subtrahends

$$-3 - 5$$

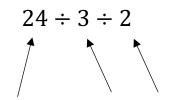
$$-8$$

minuend subtrahends

$$-5 - 3$$

$$12 - 3 - 5 = 12 - 5 - 3$$

but


$$12 - 3 - 5 \neq 5 - 3 - 12$$

and

$$12 - 3 - 5 \neq 3 - 12 - 5$$

We can subtract in any order. What we can't do is switch a subtrahend with a minuend.

Division

dividend

$$\div 3 \div 2$$

$$\div 6$$

$$24 \div 2 \div 3$$
dividend divisors
$$\div 2 \div 3$$

÷ 6

$$24 \div 3 \div 2 = 24 \div 2 \div 3$$

but

$$24 \div 3 \div 2 \neq 2 \div 3 \div 24$$

and

$$24 \div 3 \div 2 \neq 3 \div 24 \div 2$$

We can divide in any order. What we can't do is switch a divisor with a dividend.

Moving Numbers Around

When you have a mix of addition and subtraction, remember:

Addition	
+	Summands can move anywhere
_	Subtrahends can move as long as they are always behind a subtraction sign

When you have a mix of multiplication and division, remember:

Multiplication	
×	Multipliers can move anywhere
÷	Divisors can move as long as they are always behind a division sign

Worked Example	Your Turn							
Write down as many calculations as you can that are equivalent to these.	Write down as many calculations as you can that are equivalent to these.							
a) $43 + 189 + 72$ b) $11 \times 17 \times 19$ c) $360 \div 9 \div 8$ d) $34 - 5 - 15.2$	a) $12 \times 23 \times 71$ b) $180 \div 10 \div 2$ c) $95 - 17 - 51$ d) $1.2 + 3.6 + 0.4$							

	Worked Example									Your Turn								
ca	Write down as many calculations as you can that are equivalent to these.									Write down as many calculations as you can that are equivalent to these.						9		
a) $43 + 189 - 72 - 121 + 18$ b) $11 \div 4 \times 16 \times 3 \div 6$							a) $2 + 13 - 5 + 11 - 6$ b) $40 \div 10 \times 3 \div 6 \times 8$											

Notation

Using better notation for \times and \div can help us to see this more clearly.

Let's take some questions from the last page.

$$11 \div 4 \times 16 \times 3 \div 6$$

$$= \frac{11 \cdot 16 \cdot 3}{4 \cdot 6}$$
 anything multiplied on top, anything divided on bottom

$$= \frac{16 \cdot 3 \cdot 11}{6 \cdot 4}$$
 • now we can change the order of things

See how it's clearer that dividing by 6 and 4 is the same as dividing by 24.

$$40 \div 10 \times 3 \div 6 \times 8$$

$$= \frac{40 \cdot 3 \cdot 8}{10 \cdot 6}$$
 anything multiplied on top, anything divided on bottom

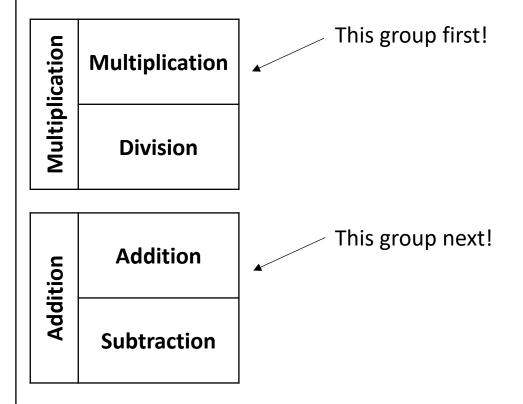
$$= \frac{3 \cdot 8 \cdot 40}{6 \cdot 10}$$
 • now we can change the order of things

See how it's clearer that dividing by 6 and 10 is the same as dividing by 60.

2.3 Mixing the Four Operations

In the last section, every question was either from the multiplication group or the addition group.

	Multiplication	Addition
Operation	×	+
Inverse Operation	÷	_


So, what happens if we have a mix of the multiplication and addition groups in the same calculation?

Mixing the Four Operations

If there is a mix of multiplication and addition, work out the multiplication first.

When we say "multiplication" we mean the multiplication group: all multiplication and division.

When we say "addition" we mean the addition group: all addition and subtraction.

When we solve calculations, we must look for the multiplication group first.

Think of + and - as <u>separators</u> between the multiplication groups.

	Worked Example									Your Turn								
Find	d the	value	of th	iese c	alcula	ations	5.			Find	d the	value	of th	ese c	alcula	ations	j.	-
a) b) c)	b) $20 \div 2 \times 3 + 4 \div 8 \times 2$									a) $25 \div 5 - 4 \times 10 + 3 \times 20$ b) $50 \div 10 \times 3 + 3 \div 9 \times 6$ c) $25 \div 5 \times 2 - 4 \times 10 \div 2 + 3 \times 2 \times 4$								

2.4 Exponentiation

At the start of this topic, we looked at a third group of operations, which we called exponentiation.

It included exponents and their inverses, roots, which we learnt about in detail in the last unit.

	Exponentiation
Operation	
Inverse Operation	$\sqrt{}$

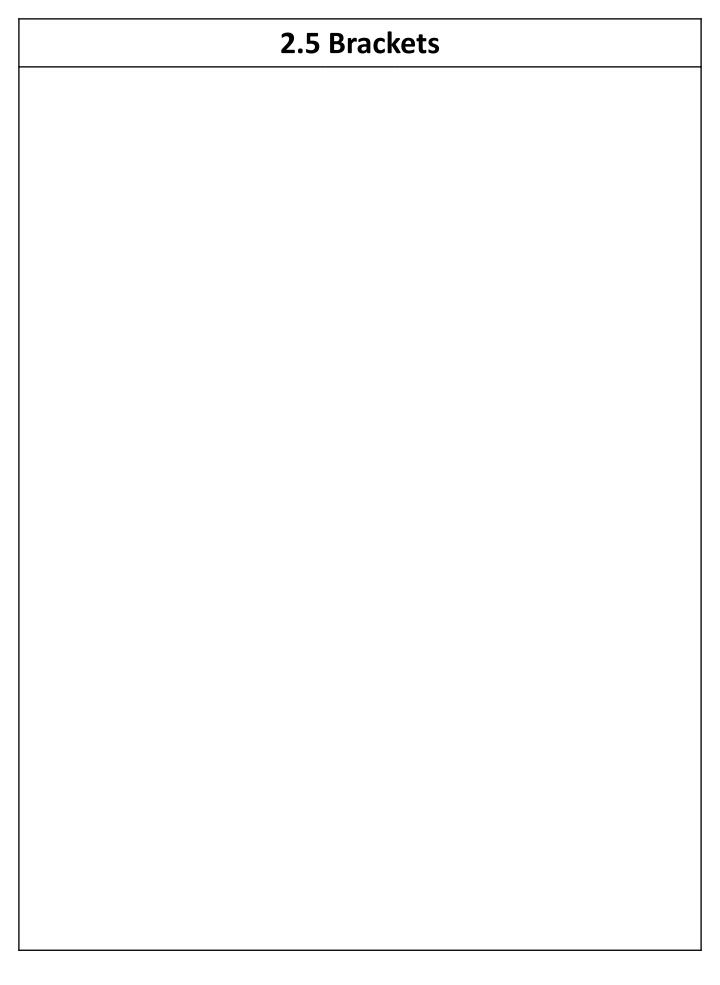
Where does exponentiation fit into the order of calculating?

Exponentiation

We have seen that multiplication should be worked out before addition.

Remember how a power comes from repeated multiplication:

$$3^4 = 3 \cdot 3 \cdot 3 \cdot 3$$


This means powers should be worked out before other multiplication.

In fact, all exponentiation should be worked out before other multiplication.

Exponentiation	Exponents
Expone	Roots
Multiplication	Multiplication
Multipl	Division
tion	Addition
Addition	Subtraction

Worked Example Your Turn		
Find the value of these calculations.	Find the value of these calculations.	
a) $2^3 + 5$ b) $15 - \sqrt{81}$ c) $10 \cdot 4^2$	a) $5^2 - 11$ b) $5 + \sqrt[3]{64}$ c) $2 \cdot \sqrt{49}$ d) $2 \cdot 6^2$	

Worked Example	Your Turn
Find the value of these calculations.	Find the value of these calculations.
a) $3 \times 2^3 + 5 \times 3$	a) $\frac{32}{4^2} + 9^2 \cdot 2$
b) $\frac{66}{2} - \frac{\sqrt{36}}{2} + 2^4$	b) $\frac{\sqrt{144}}{2} + 8^2 - 2 \cdot 5^2$

Breaking the Order

Work out the value of

$$10 + 2 \times 3$$

Of course, the answer is 16, because we multiply before adding.

But what if we *want* to add first? How can we show that we want to add *before* multiplying?

We have a clever way of showing that we want to break the normal order.

$$(10 + 2) \times 3$$

By putting brackets () around the addition, we mean "break the order, do this first!"

Work out the new value.

Worked Example	Your Turn	
Find the value of these calculations.	Find the value of these calculations.	
a) $3 \cdot 9 + 5$ b) $3 \cdot (9 + 5)$ c) $15 - 9 \div 3$ d) $(15 - 9) \div 3$	a) $12 \div 4 + 2$ b) $12 \div (4 + 2)$ c) $5 + 7 \cdot 2$ d) $(5 + 7) \cdot 2$	

The Order of Operations

We now know the order in which we calculate.

This group is repeated multiplication, so we can think of it as "stronger" than multiplication.

This group is repeated addition, so we can think of it as "stronger" than addition.

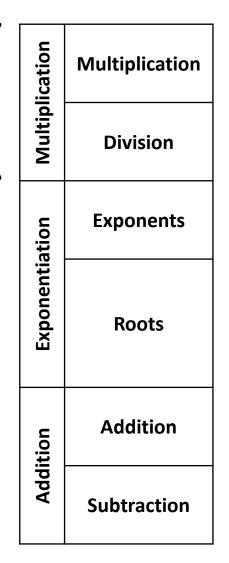
ntiation	Exponents	
Exponentiation	Roots	
tion	Multiplication	
Multiplication	Division	
ition	Addition	
Addition	Subtraction	

Brackets break the order, so we must always look at them first.

The Order of Operations

Brackets break the order.

Addition


Subtraction

Exponents

Roots

Multiplication

Division

Multiplying a Bracket

We have seen questions that look like this: $2 \times (5 + 3)$ which can also be written easily like this: $2 \cdot (5 + 3)$

these all mean the same thing

We normally don't even write the dot: 2(5 + 3)

There is no symbol between the 2 and the bracket.

No symbol still means 'multiply'.

We know that multiplication is commutative, so these two calculations have the same answer:

$$2 \cdot (5+3)$$
 and $(5+3) \cdot 2$

When we remove the multiplication symbol, we always write the number in front of the bracket.

$$2(5+3)$$
 not $(5+3)2$

The main reason for this is to avoid confusion with exponents: $(5+3)^2$

Worked Example	Your Turn
Find the value of these calculations.	Find the value of these calculations.
a) 3(9 + 5) b) (15 - 9)3	a) 12(4+2) b) (5+7)2

Hidden Brackets

Many calculations use hidden brackets.

Here is a division calculation: $(6 + 4) \div 2$

We can write it like this: $\frac{(6+4)}{2}$

We don't need to write the brackets: $\frac{6+4}{2}$

The long bar under the 6 + 4 tells us there's a hidden bracket.

Be careful, though. It's different to this $\frac{6}{2} + 4$ and this $6 + \frac{4}{2}$

Many calculations use hidden brackets.

Here is a root calculation: $\sqrt{(4+5)}$

We don't need to write the brackets: $\sqrt{4+5}$

The long bar over the 4 + 5 tells us there's a hidden bracket.

Be careful, though. It's different to this $\sqrt{4} + 5$.

Many calculations use hidden brackets.

Here is an exponent calculation: $2^{(3+1)}$

We don't need to write the brackets: 2^{3+1}

The addition is clearly in the exponent, which tells us there's a hidden bracket.

Be careful, though. It's different to this $2^3 + 1$.

Worked Ex	ample	Your Turn
Find the value of th calculations.	ese	Find the value of these calculations.
a) $\sqrt{25} \times \frac{4+14}{2}$		a) $\sqrt{4} \times \frac{9+15}{3}$
b) $\sqrt{25 \times 4} + \frac{14}{2}$		b) $\sqrt{4 \times 9} + \frac{15}{3}$

Worked Example	Your Turn
Find the value of these calculations.	Find the value of these calculations.
a) 3(9 + 5) b) (15 - 9)3	a) 12(4+2) b) (5+7)2

Worked Example

Your Turn

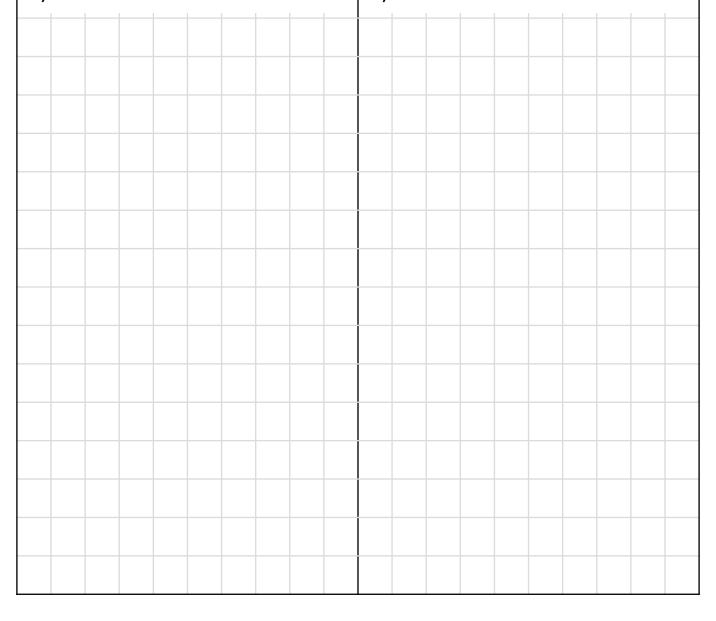
Insert brackets to make the following calculations true:

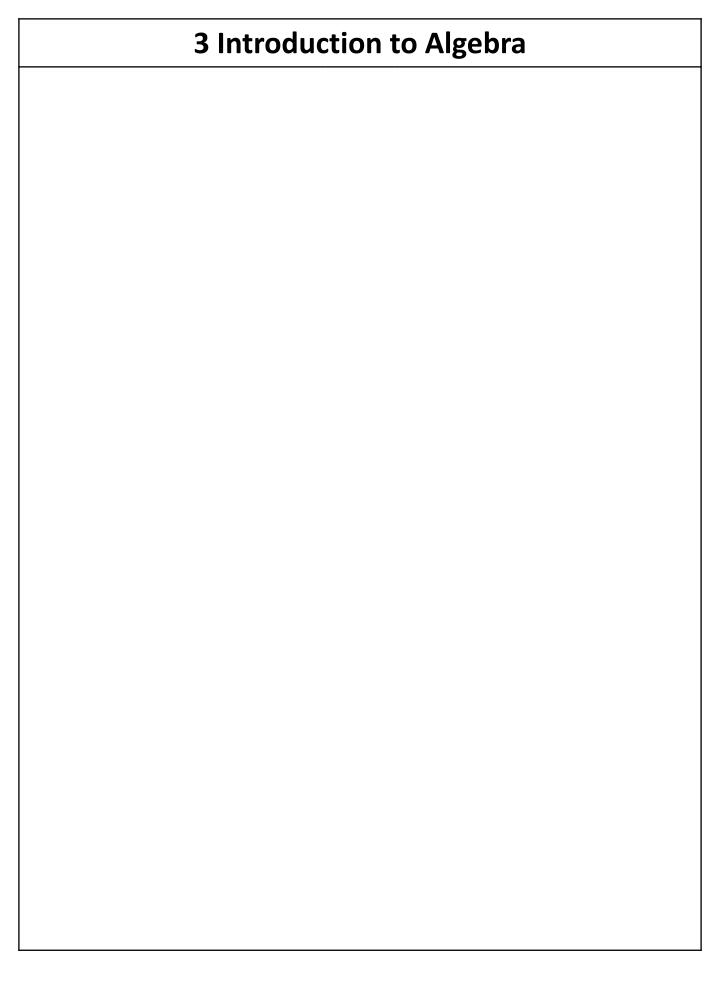
Insert brackets to make the following calculations true:

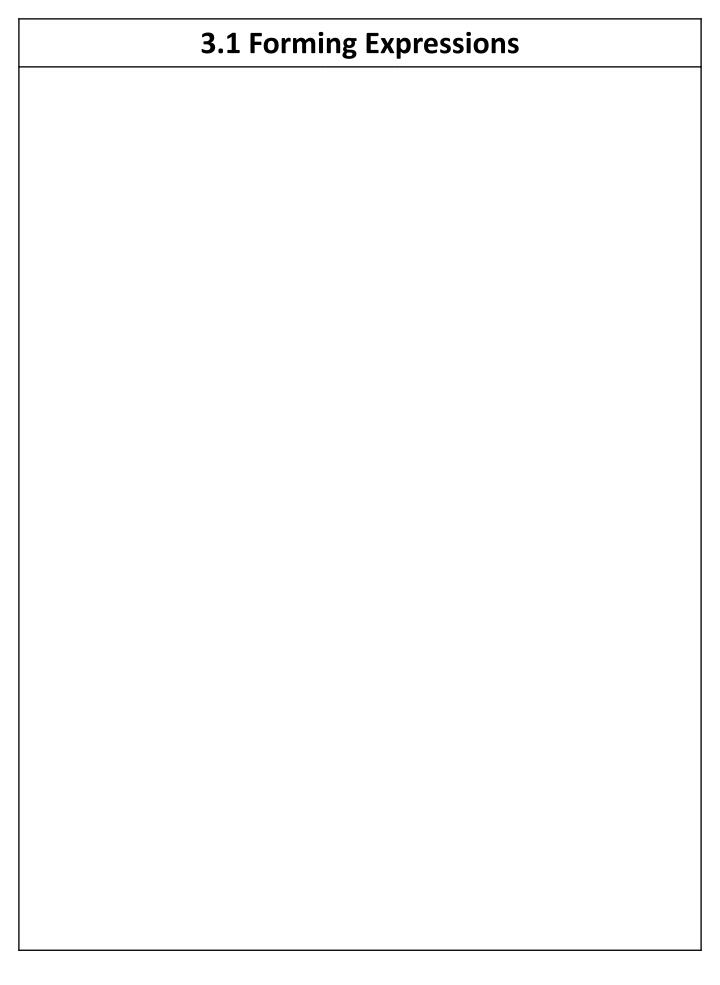
a)
$$8 + 4 \times 5 - 2 = 20$$

a)
$$7 + 3 \times 5 - 1 = 49$$

b)
$$8 + 4 \times 5 - 2 = 58$$


b)
$$7 + 3 \times 5 - 1 = 40$$


c)
$$8 + 4 \times 5 - 2 = 26$$


c)
$$7 + 3 \times 5 - 1 = 19$$

d)
$$8 + 4 \times 5 - 2 = 36$$

d)
$$7 + 3 \times 5 - 1 = 21$$

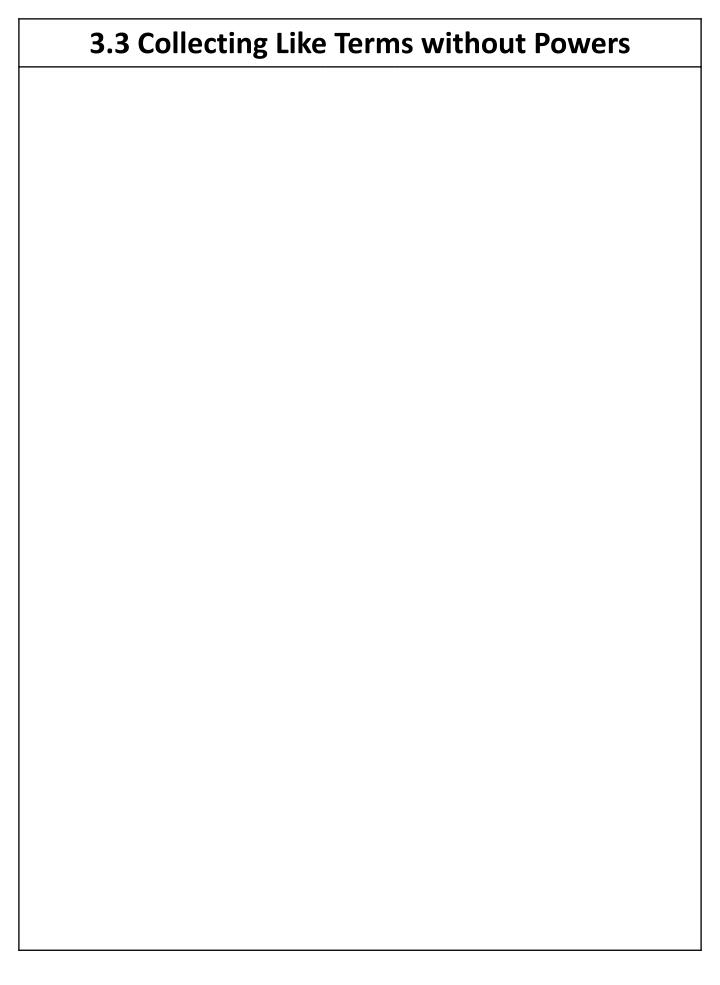
Worked Example	Your Turn
Write an algebraic expression for each of the following:	Write an algebraic expression for each of the following:
3 more than a	3 less than a
5 less than a	a more than 5
b multiplied by a	b divided by a
b multiplied by a then squared	b divided by a then squared

Worked Example Your Turn a) Adam is x years old. Lucy is a) Albert is z years old. Laura is 3 times as old as Albert. 15 years older than Adam. Write down an expression, Write down an expression, in terms of x, for Lucy's age. in terms of z, for Laura's age. b) Ahmed is z years old. Libby Adam has y cards. Latika has b) is 3 times as old as Ahmed. twice as many cards as John is 19 years older than Adam. Jack has 10 less cards Libby. Write down an than Latika. Write down an expression, in terms of z, for expression, in terms of y, for John's age. the number of cards Jack has. c) Alfred has x stickers. Lottie has 11 less stickers than c) Alfie is z years old. Lottie is 15 years younger than Alfred, John has 5 times as Alfie. John is 3 times as old many stickers as Lottie. Write down an expression, as Lottie. Write down an in terms of x, for the expression, in terms of z, for number of stickers John has. John's age.

Worked Example Your Turn Zoe packs pens and pencils into Olly bought 19 bags of cement boxes. She can fit 18 pens into a and 5 of gravel. Each bag of box and 6 pencils into a box. Zoe cement contains x kg. completely fills x boxes with Each bag of gravel contains y kg. pens and y boxes with pencils. Olly bought more cement than Write down an expression, in gravel. Write down an terms of x and y, for the total expression, in terms of x and y, amount of pens and pencils that for the difference, in kilograms, Zoe packs into boxes. between the amount of cement and the amount of gravel that Olly bought.

3.2 Conventions and Definitions

The conventions include:


- We tend to use single lowercase letters for variables, either using the English alphabet or using the Greek alphabet.
- An algebraic x is written using two back-to-back c's. Do NOT write it as a \times symbol.
- Do NOT include the multiplication sign, for example $3 \times p = 3p$
- Write division as fractions, for example $3 \div p = \frac{3}{p}$
- Write numbers first in products, for example $p \times 3 = 3p$
- Write letters in products in alphabetical order, for example $4 \times q \times r \times p = 4pqr$
- 1x is written simply as x

The definitions include:

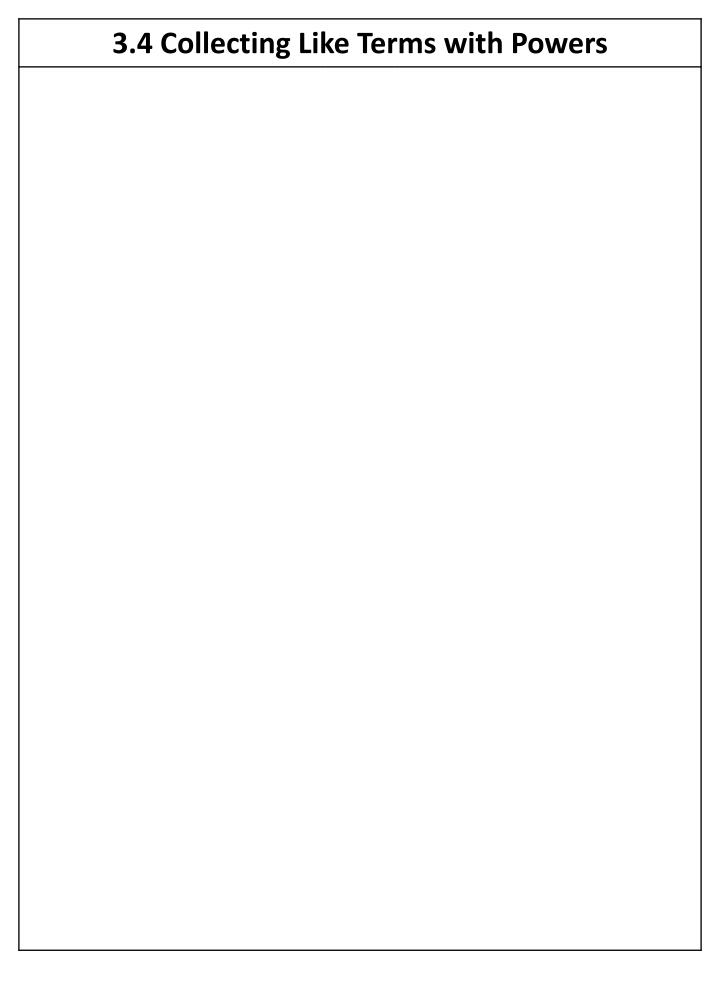
- Variable is a letter used to represent an unknown number.
- Coefficient is the number in front of a variable.
- Constant is a number that cannot change its value.
- Term is either a constant, a variable or a constant multiplied by a variable.
- **Expression** is terms and operators (+ and -) grouped together.

Worked Example	Your Turn
Write down the following for the expression:	Write down the following for the expression:
2x - 4y - 9	-2a + 4b + 9
Variables:	Variables:
Coefficient of x:	Coefficient of a :
Coefficient of y:	Coefficient of b:
Constant:	Constant:
Terms:	Terms:

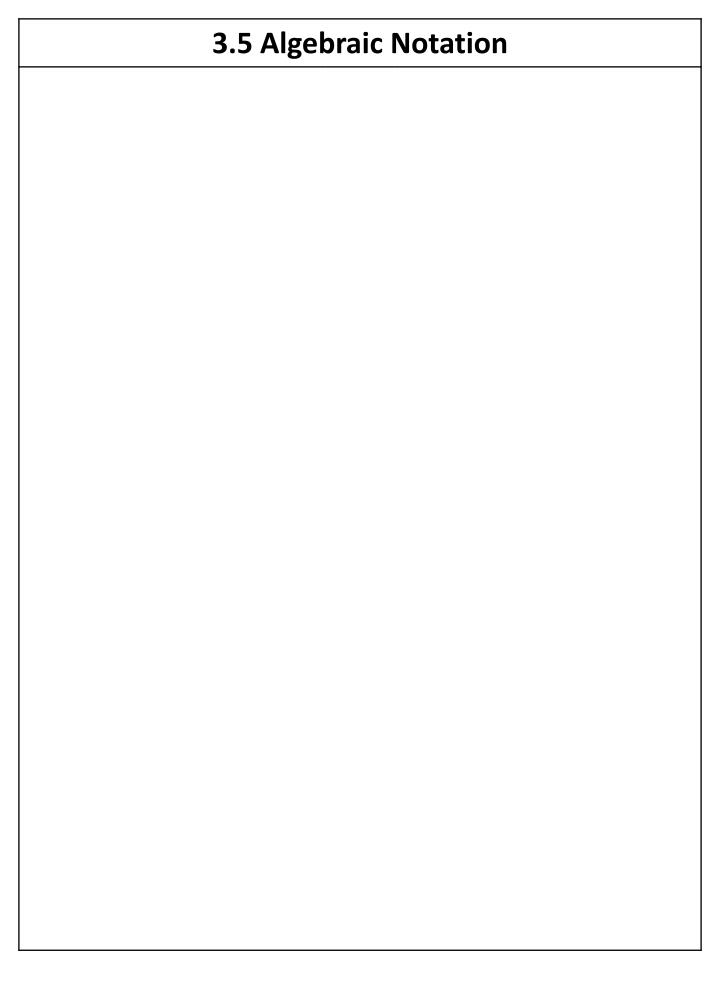
Worked Example	Your Turn
Write down the following for the expression:	Write down the following for the expression:
$2x^2 - 4xy - 9$	$-2ab + 4b^2 + 9$
Variables:	Variables:
Coefficient of x^2 :	Coefficient of ab :
Coefficient of xy:	Coefficient of b^2 :
Constant:	Constant:
Terms:	Terms:

Frayer Model – Like Terms **Definition Characteristics Examples Non-Examples**

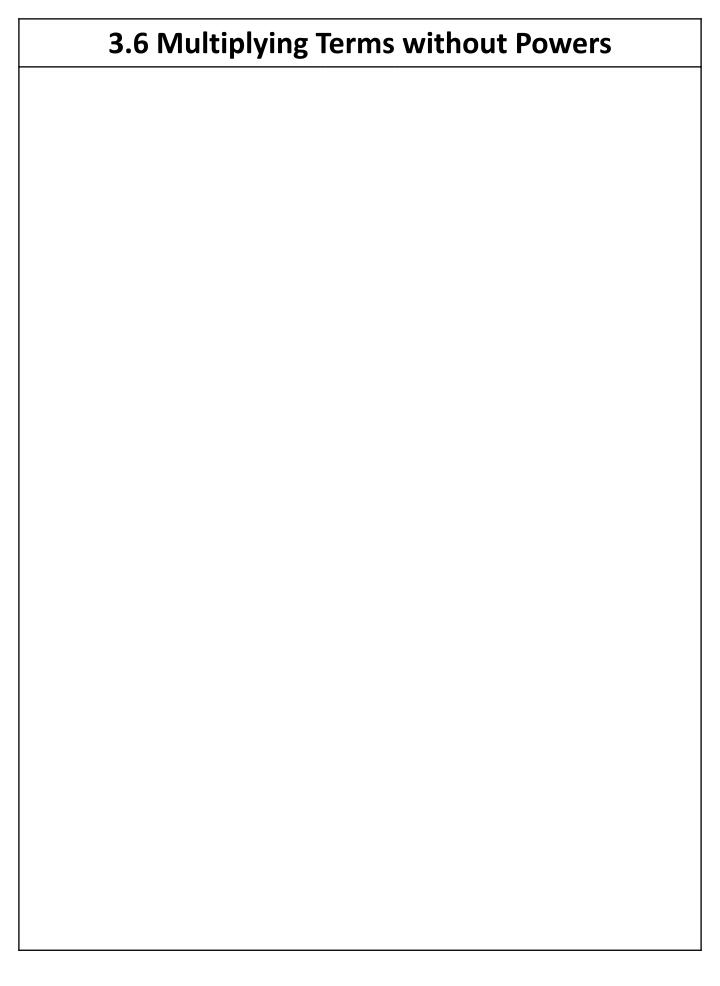
	Fluency	Practice
--	---------	-----------------

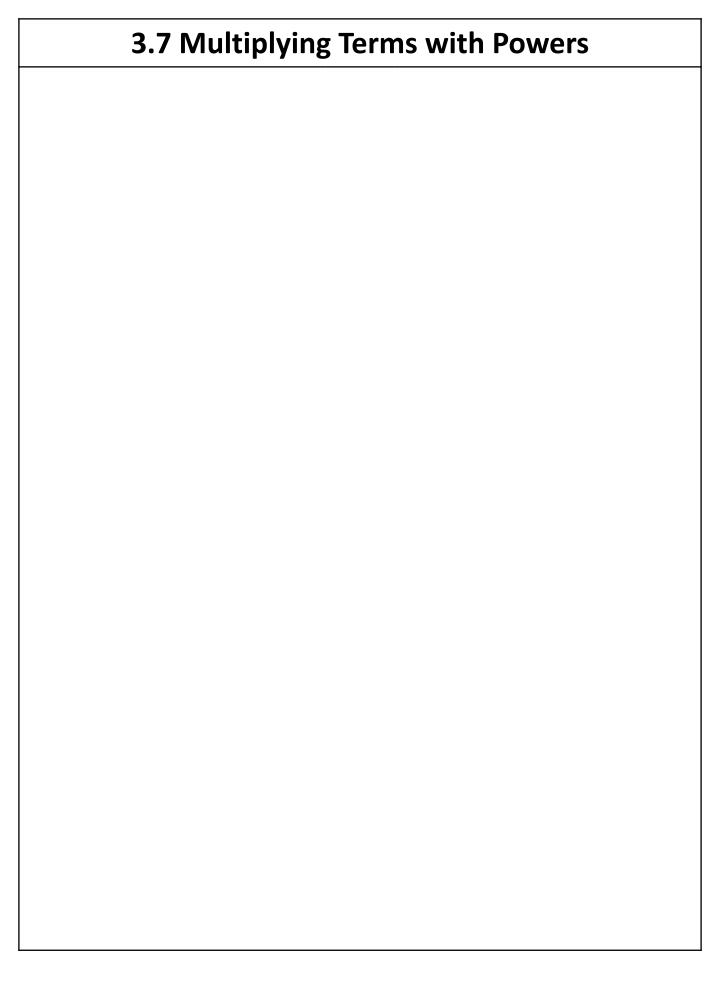

3 <i>p</i>	p	Like	Unlike
x^2	$3x^2$	Like	Unlike
x^2	2x	Like	Unlike
$-3\sqrt{x}$	$27\sqrt{x}$	Like	Unlike
7 <i>a</i>	7 <i>b</i>	Like	Unlike

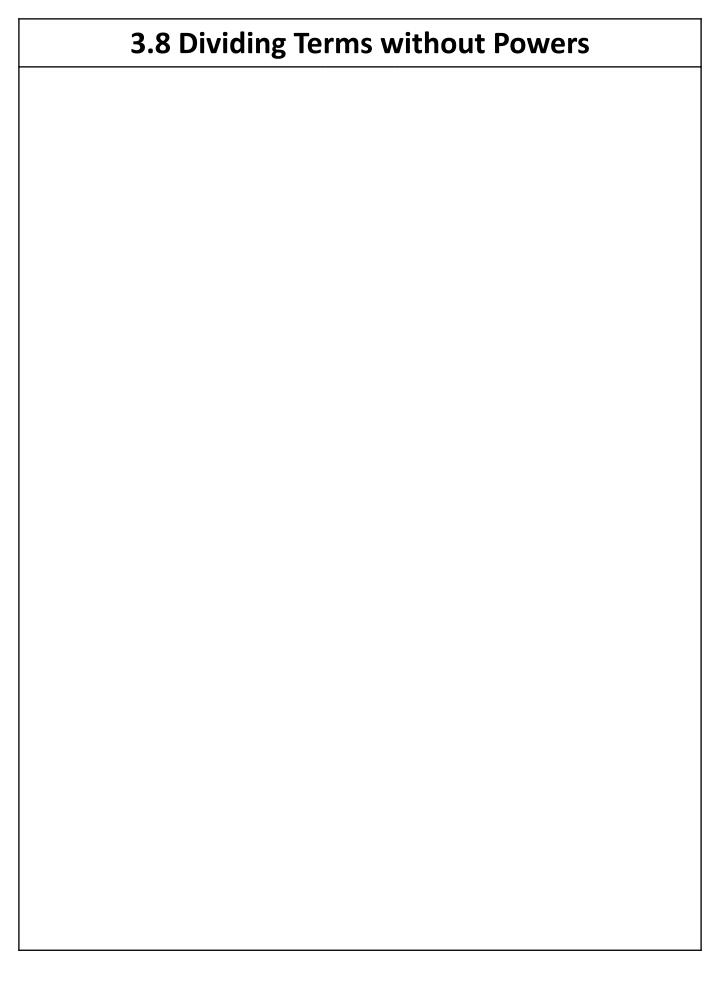
3 <i>a</i>	3a	Like	Unlike
a	2 <i>a</i>	Like	Unlike
2 <i>a</i>	2 <i>A</i>	Like	Unlike
-3 <i>a</i>	2 <i>a</i>	Like	Unlike
4 <i>a</i>	4 <i>b</i>	Like	Unlike
3 <i>a</i>	$3a^2$	Like	Unlike
$2a^2$	$7a^2$	Like	Unlike
$-3a^2$	$7a^2$	Like	Unlike
$2a^2$	$2a^{-2}$	Like	Unlike
2^a	a^2	Like	Unlike
x	\sqrt{x}	Like	Unlike
1	2	Like	Unlike

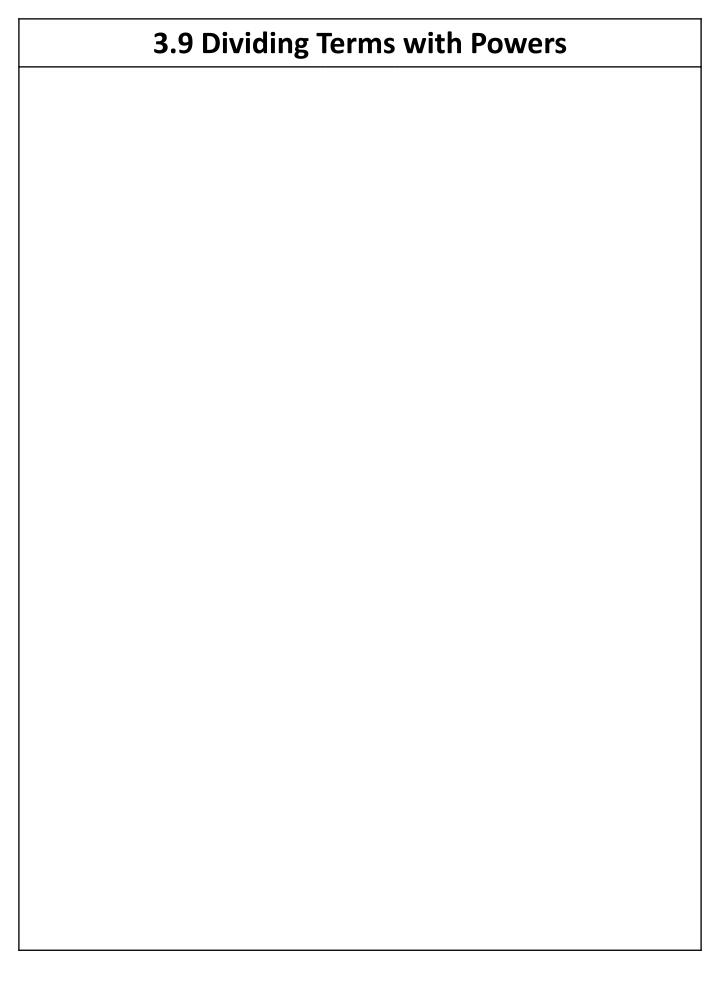

Frayer Model – Expression **Definition Characteristics Examples Non-Examples**

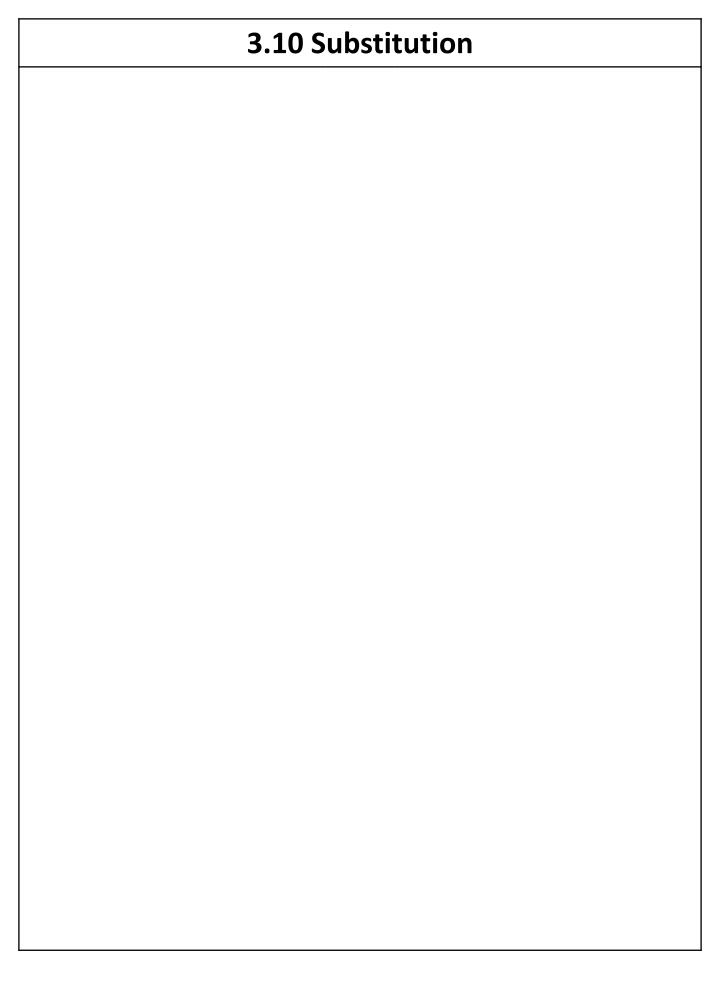
Worked Example	Your Turn
Simplify:	Simplify:
a) $4p + 2p + 3p$	a) $5r + 6r + 7r$
b) $6y - 3y - 4y$	b) $3x - x - 4x$
c) $4q - 3q - 3q - 4q + 3q$	c) $4z + 5z - 5z - 3z - 2z$


Worked Example	Your Turn											
Simplify: a) $6p + 9p + 4q + 7p$ b) $-7x + 5y - y - 6x$	Simplify: a) $3q + q + 6p + 4p$ b) $-p - 7p + 7p + 6q$											


Worked Example									Your Turn											
Simplify: a) $y^4 + y^2 + 3y^4 - 4q^4$ b) $5p^4 - 2x^4 - x^4 + 4x^4$ c) $5xy - x^2 + 9xy^2 + 10x^2 - xy^2$									Simplify: a) $3z^4 + 3z^4 + 3z^3 + p^4$ b) $p^2 - 4z^3 - 5z^2 + 3z^3$ c) $7a^2 + 6a - 4a^2b - 3a^2b - 4a^2$											
	_																			


Worked Example	Your Turn
Explain what the following mean:	Explain what the following mean:
7x	7 <i>a</i>
xy	ab
xy^2	ab^2
$(xy)^2$	$(ab)^2$


Worked Example	Your Turn											
Simplify: a) $6 \times 4b$ b) $5p \times q$ c) $2p \times 8y$ d) $8z \times 7z$	Simplify: a) $6a \times 3$ b) $p \times 5x$ c) $4x \times 4y$ d) $3z \times 2z$											


Worked Example	Your Turn
Simplify: a) $8x^4y^7 \times x^2y^4$ b) $7x^8y^3 \times 4x^8y^6$	Simplify: a) $x^8y \times 8x^5y^2$ b) $8x^2y^4 \times 6x^2y^6$

Worked Example	Your Turn
Simplify: a) $\frac{6x}{3}$	Simplify: a) $\frac{8y}{2}$
b) $\frac{6x}{x}$	b) $\frac{8y}{y}$
c) $\frac{6xy}{y}$	c) $\frac{8xy}{x}$
$d) \frac{6xy}{3y}$	$d) \frac{8xy}{2x}$

Worked Example										Your Turn											
Sir	npli	fy:								Sir	npli	ify:									
a)	Simplify: a) $\frac{x^6y^6}{x^4y^4}$										$\frac{x^2}{x^2}$	$\frac{y^3}{2y^3}$									
b)	10) x ⁸ y 5 x y ³	,5 -	l						Simplify: a) $\frac{x^6y^8}{x^2y^3}$ b) $\frac{9x^5y^5}{3x^3y}$											

	Worked Example										Your Turn									
a)	Ca	lcula	ate -	$\frac{14}{y} +$	<i>y</i> ²	whe	n y	= 7		a)	Ca	lcula	ate 🤈	y ² +	- 3 <i>y</i>	whe	en <i>y</i>	= 2	2	
b)	W	ork (out -	4 <i>z</i> +1	wh	en z	· = 6	ó		b)	W	ork (out -	$\frac{2z-1}{4}$	wh	en z	= 1	l		
- ,				4																

	Worked Example											Your Turn									
a)					+ 40 = 7		hen	1		a) Evaluate $x^2 - 2y$ when $x = 10$ and $y = 1$											
b)					p + = 1		² wł	nen		b) Work out $(4x + 3y)^2$ when $x = 1$ and $y = 3$											

	Worked Example											Your Turn								
a)			ate		~	•		n		a)							hei	1		
	а	= -	-3 a	and	<i>b</i> =	= -(6			x = -8 and y = -9										
b)	b) Work out $p^2 - 2q$ when $p = -2$ and $q = -6$										b) Work out $p^2 - 4q$ when $p = -8$ and $q = -2$									
											•									