

Year 7 2024 Mathematics 2025 Unit 1 Booklet

HGS Maths

Dr Frost Course

Name:

Class:

Contents

- 1 Factors, Multiples and Primes
- 1.1 <u>Types of Numbers</u>
- 1.2 <u>Multiples</u>
- 1.3 Common Multiples
- 1.4 Lowest Common Multiple
- 1.5 **Divisibility Tests**
- 1.6 <u>Factors</u>
- 1.7 <u>Prime Numbers</u>
- 1.8 <u>Common Factors</u>
- 1.9 Highest Common Factor
- 1.10 HCF and LCM Worded Problems
- 2 Sets and Venn Diagrams
- 2.1 <u>Sets</u>
- 2.2 Multiple Sets and The Universal Set
- 2.3 Venn Diagrams with Two Circles
- 2.4 Venn Diagrams with Three Circles
- 3 <u>Negative Numbers</u>
- 3.1 Adding and Subtracting Negative Numbers
- 3.2 Multiplying Negative Numbers
- 3.3 Dividing Negative Numbers
- 3.4 Real Life Applications
- 3.5 Mixed Operations

1 Factors, Multiples and Primes

1.1 Types of Numbers

Fray	Frayer Model – Integers						
Definition	<u>Characteristics</u>						
Examples	Non-Examples						

Frayer Mod	Frayer Model – Square Numbers							
Definition	Characteristics							
Examples	Non-Examples							

Frayer Model –	Cube Numbers
Definition	Characteristics
Examples	<u>Non-Examples</u>

Frayer Model – T	Frayer Model – Triangular Numbers						
Definition	<u>Characteristics</u>						
<u>Examples</u>	Non-Examples						

Worked Example	Your Turn
1) Write down the fifth square number	1) Write down the eighth square number
2) Write down the second cube number	2) Write down the third cube number
3) Square 12	3) Square 9
4) Cube 8	4) Cube 5
5) Write down the fifth triangular number	5) Write down the eighth triangular number

1.2 Multiples

Fraye	Frayer Model – Multiples					
Definition	Characteristics					
Examples	Non-Examples					

Worked Example											Yo	ur	Tu	rn			
a)	a) Write down the first six multiples of 6							a) Write down the first six multiples of 8									
b)	Write multi	b) Write down the first six multiples of 37															

1.3 Common Multiples

	Wo	rke	d Ex	am	ple	9		Your Turn									
a)	a) Find the first three common multiples of 6 and 15								a) Find the first three common multiples of 8 and 20							n	
b)	 b) Find the first three common multiples of 21 and 24 								b) Find the first three commultiples of 32 and 36							mo	n

Worked Example	Your Turn							
Dr. Clark's age is a multiple of 5 and 9. His age is one away from a multiple of 7. He is younger than 100 years old. How old is Dr. Clark?	Dr. Martinez's age is a multiple of 9 and 12. Her age is one away from a multiple of 7. She is younger than 40 years old. How old is Dr. Martinez?							

1.4 Lowest Common Multiple

Frayer Model – Lowest Common Multiple

•	•
Definition	Characteristics
Examples	Non-Examples

	١	No	rk	ed	Exa	am	ple	9	Your Turn									
a)	a) Find the LCM of 6 and 15							a) Find the LCM of 8 and 20										
b)	Fi	nd t	he	LCIV	l of	21	and	124	b) Find the LCM of 32 and 36									

1.5 Divisibility Tests

Number	Test	Example	Non-Example				
2	Number ends in 0, 2, 4, 6 or 8	1246	3273				
5	Number ends in 0 or 5	3825	1011				
10	Number ends in 0	4890	3568				

Divisibility Tests for 4 and 8							
Number	Test	Example Non-Exam					
4	Last two digits divisible by 4	7356	9382				
8	Last three digits divisible by 8	4512	8148				

Divisibility Tests for 3 and 9 Number Example Non-Example Test 3 Sum of digits divisible by 4567 1353 3 9 Sum of digits divisible by 1458 3057 9

Number Test Example Non-Examp	ole
7 Multiply the last digit by 5 and add it to the remaining part of the number, and see if the result is divisible by 7 9961 3581	

Divisibility Test for 11							
Number	Test	Example	Non-Example				
Number	Iest Sum of odd-positioned digits subtract sum of even-positioned digits and see if the result is divisible by 11	2761 8261	Non-Example 5476				

Divisibility Tests for 6 and 12							
Number	Test	Example	Non-Example				
6	Divisible by both 2 and 3	4728	7352				
12	Divisible by both 3 and 4	3576	1222				

Worked Example	Your Turn					
Find which possible digit(s) could go in the box to make 958 divisible by 6.	Find which possible digit(s) could go in the box to make 16□24 divisible by 8.					

1.6 Factors

Frayer Model – Factors					
Definition	Characteristics				
Examples	Non-Examples				

	Worked Example											Yo	ur	Tu	rn				
a) Find all the factors of 44							a) Find all the factors of 88												
b)	Fir	nd a	ll tł	ne fa	acto	ors (of 1	20		b)	Fir	nd a	all tł	ne f	acto	ors o	of 1	80	

1.7 Prime Numbers

Frayer Model – Prime Numbers						
Definition	Characteristics					
Examples	Non-Examples					

Activity

1	2	3	4	5	6	7
	8	9	10	11	12	13
	14	15	16	17	18	19
	2	21	22	23	24	25
	26	27	28	29	30	31
	32	33	34	35	36	37
	38	39	40	41	42	43
	44	45	46	47	48	49
	50	51	52	53	54	55
	56	57	58	59	60	61
	62	63	64	65	66	67
	68	69	70	71	72	73
	74	75	76	77	78	79
	80	81	82	83	84	85
	86	87	88	89	90	91
	92	93	94	95	96	97
	98	99	100			

1.8 Common Factors

	Worked Example	Your Turn				
a)	Find the common factors of 6 and 15	a) Find the common factors of 8 and 20				
b)	Find the common factors of 84 and 96	 b) Find the common factors of 42 and 98 				

1.9 Highest Common Factor

Frayer Model – Highest Common Factor Definition Characteristics Examples Non-Examples

Worked Example									Your Turn									
a)	a) Find the HCF of 6 and 15									a) Find the HCF of 8 and 20								
b)	b) Find the HCF of 84 and 96								b) Find the HCF of 42 and 98									

1.10 HCF and LCM Worded Problems

Worked Example	Your Turn							
Two strings of different lengths, 15 cm and 24 cm are to be cut into equal integer lengths. What is the greatest possible length of each piece?	Two strings of different lengths, 18 cm and 30 cm are to be cut into equal integer lengths. What is the greatest possible length of each piece?							

Worked	Example	Your Turn							
	many seconds	Two lighthouses flash their lights every 18 s and 30 s respectively. They both flash at the same time. After how many seconds will they next both flash at the same time.							

Wor	ked Ex	ample	Your Turn										
Mary is org dog sale. T rolls in eac 15 hot dog Mary buys number of dogs. What number of Mary can b	here are h packet. s in each exactly t bread ro t is the sr each pac	Mary is organising a charity hot dog sale. There are 30 bread rolls in each packet. There are 24 hot dogs in each packet. Mary buys exactly the same number of bread rolls as hot dogs. What is the smallest number of each packet that Mary can buy?								t			

2 Sets and Venn Diagrams

2.1 Sets

A set is a collection of numbers, or letters, or symbols, or objects, etc., which are related in some way.

The items in a set are called 'members' or 'elements'

Curly brackets (often called 'braces') are usually used when listing or describing sets – this helps to distinguish sets from lists of unrelated items.

The elements within a set are usually described in words or listed

Examples:

Description in words	List of elements
{even numbers less than 11}	{2, 4, 6, 8, 10}
{the first five prime numbers}	{2, 3, 5, 7, 11}
{multiples of three between 10 and 20}	{12, 15, 18}
{factors of 27 which are even}	{}

More examples of sets:

Description in words	List of elements
{quadrilaterals with four equal length sides}	{square, rhombus}
{vowels}	{a, e, i, o, u}
{letters in the word 'banana'}	$\{a, b, n\}$
{yellow fruit}	{grapefruit, banana, lemon,}

Notes:

Elements are only ever included once – as shown with {letters in the word 'banana'} = $\{a, b, n\}$ {yellow fruits} is an imprecise description and the list of elements contains only examples.

						١	No	rke	ed	Exa	am	ple	5			
a) b) c)																

								Yo	ur	Tu	rn							
	c) {letters in the word BIRMINGHAM}																	
d)	{p	ossi	ible	out	tcor	nes	wh	en a	an c	ordir	nary	/ dic	ce is	s thr	ow	n}		

2.2 Multiple Sets and The Universal Set

When we have more than one set, capital letters are usually used to represent them.

Examples:

Description in words	List of elements
$A = \{ \text{prime numbers between 10 and 20} \}$	<i>A</i> = {11, 13, 17, 19}
$B = \{ \text{factors of } 24 \}$	$B = \{1, 2, 3, 4, 6, 8, 12, 24\}$
$C = \{\text{vowels}\}$	$C = \{a, e, i, o, u\}$

Note that it is often convenient to use letters that are in some way connected to the description of the set.

e.g. $P = \{\text{prime numbers between 10 and 20}\}, F = \{\text{factors of 24}\} \text{ and } V = \{\text{vowels}\}$

The Universal set is the set of all elements under consideration.

Elements that can be in other sets are restricted to those within the Universal set. For example, if the Universal set was {integers less than 10}, then {prime numbers} would be limited to $\{2, 3, 5, 7\}$.

Likewise if the Universal set was {even numbers}, then {factors of 18} would be {2, 6, 18}

Notation

In Britain the special symbol ' \mathcal{E} ' is used to represent the Universal set but in some countries, such as America, the letter 'U' is used.

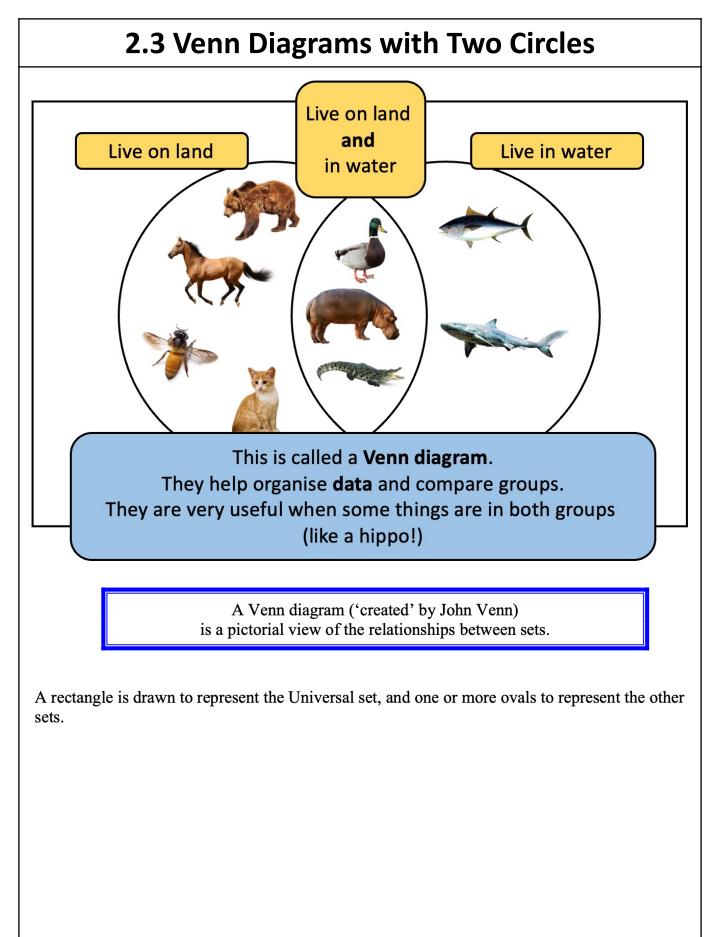
Thus we could write

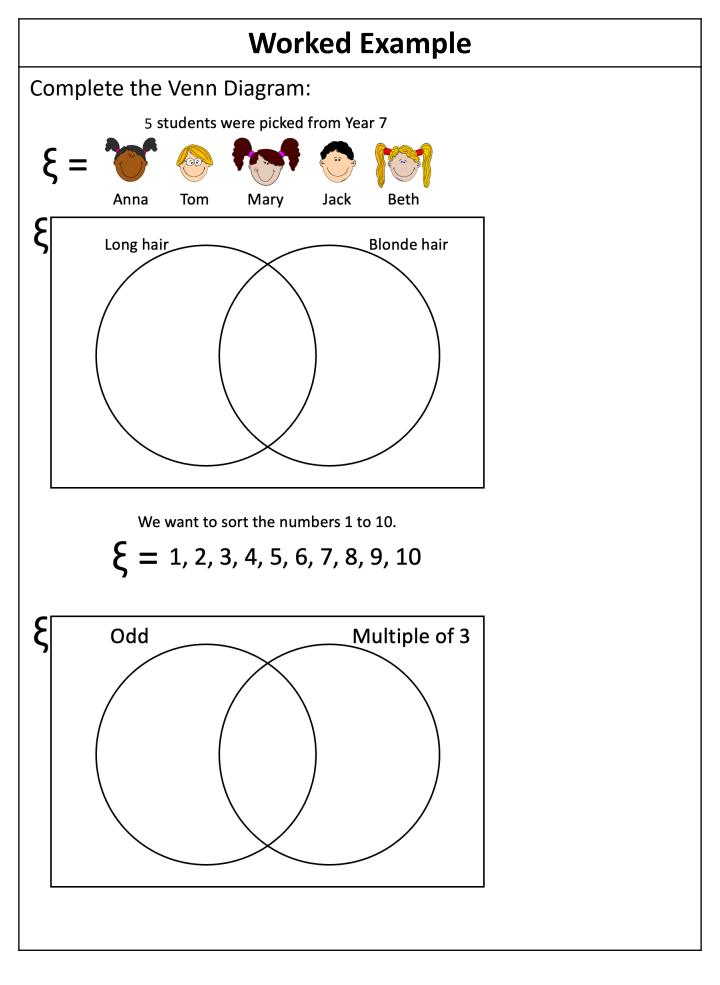
 $\mathcal{E} = \{ \text{integers less than 10} \} \text{ or } \mathcal{E} = \{ \text{prime numbers} \}$

Worked Example

- a) ξ = {odd numbers less than 15}
 A = {prime numbers}
 B = {multiples of 3}
 List:
 - i) A
 - ii) B
- b) ξ = {first 10 letters of the alphabet}
 X = {vowels}
 Y = {letters in the word 'ENGLISH'}
 List:
 - i) X

```
ii) Y
```

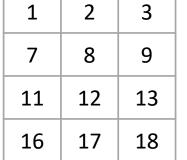

- c) ξ = {factors of 24}
 P = {prime numbers}
 E = {even numbers}
 O = {odd numbers}
 List:
 - i) P
 - ii) E
 - iii) O


Your Turn

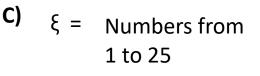
- a) ξ = {even numbers less than 15}
 A = {prime numbers}
 B = {multiples of 3}
 List:
 - i) A
 - ii) B
- b) ξ = {first 10 letters of the alphabet}
 X = {vowels}
 Y = {letters in the word 'FRENCH'}
 List:
 - i) X

```
ii) Y
```

- c) ξ = {factors of 30}
 P = {prime numbers}
 E = {even numbers}
 O = {odd numbers}
 List:
 - i) P
 - ii) E
 - iii) O

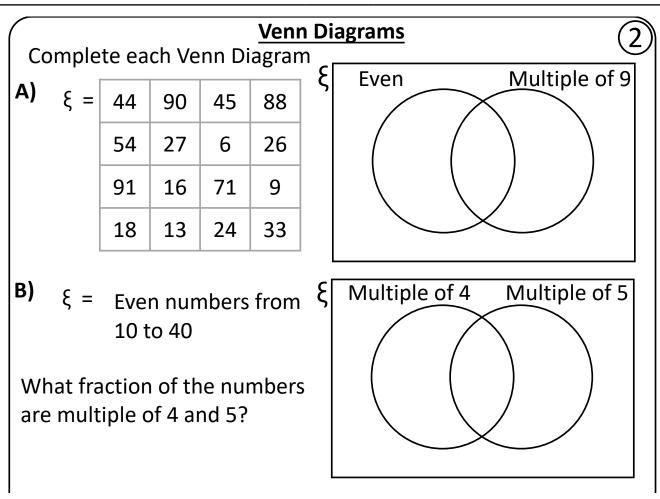


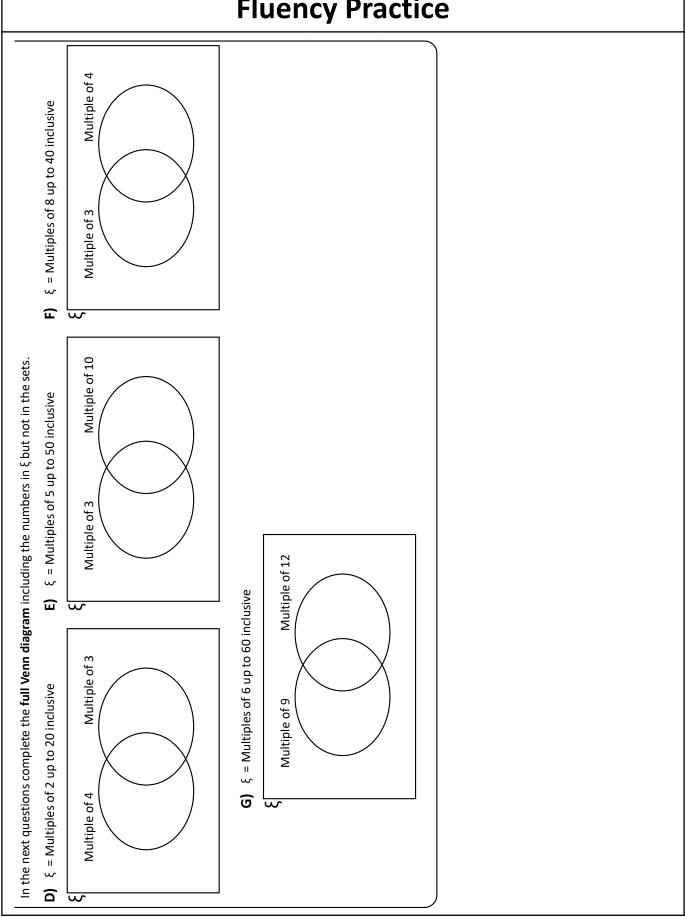
Your Turn Complete the Venn Diagram: 8 Wears glasses Boy Jess Anna May Jo Tom 60 30 Rob Pete $\xi = 3, 4, 5, 7, 10, 12,$ Multiple of 5 Odd ξ 13, 15, 20, 24, 25

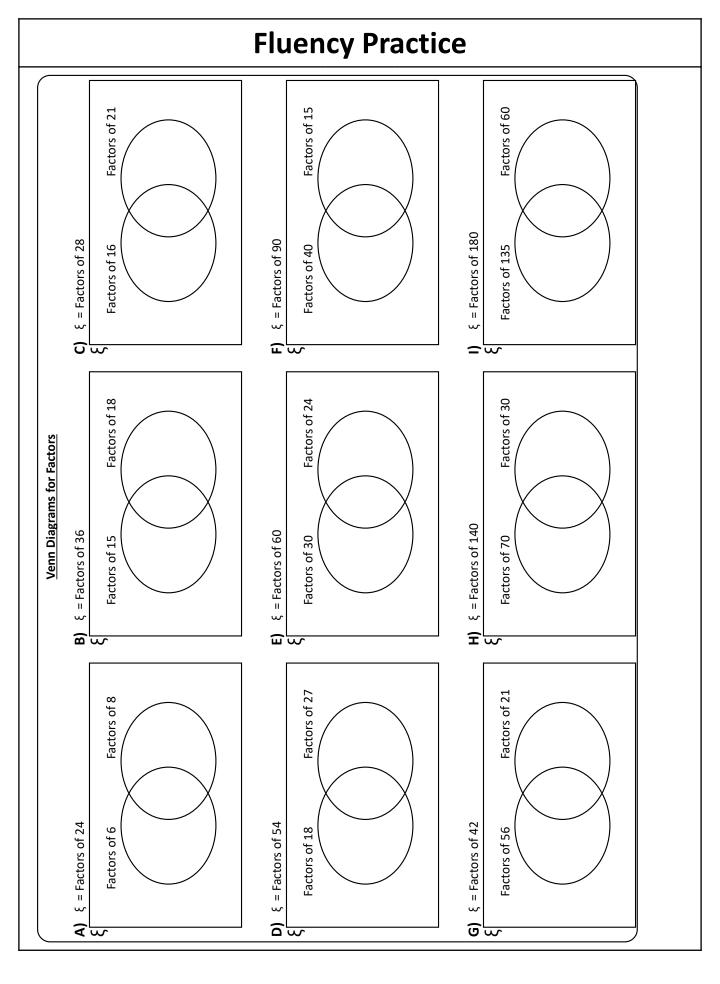

Odd

ξ =	34	14	15	28
	21	70	20	13
	1	25	7	16
	6	35	18	41

B)

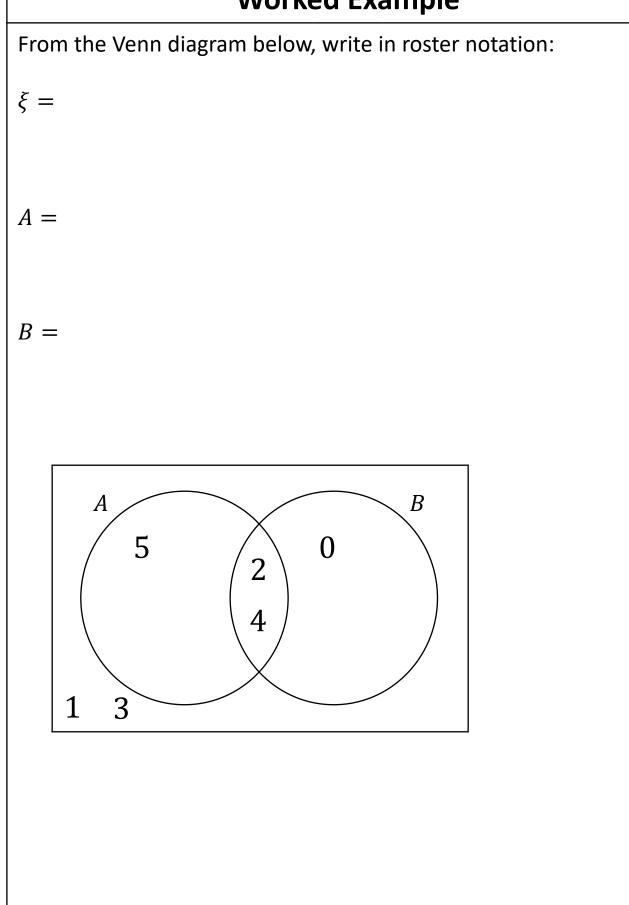



What fraction of the numbers are not a multiple of 3 or 4?

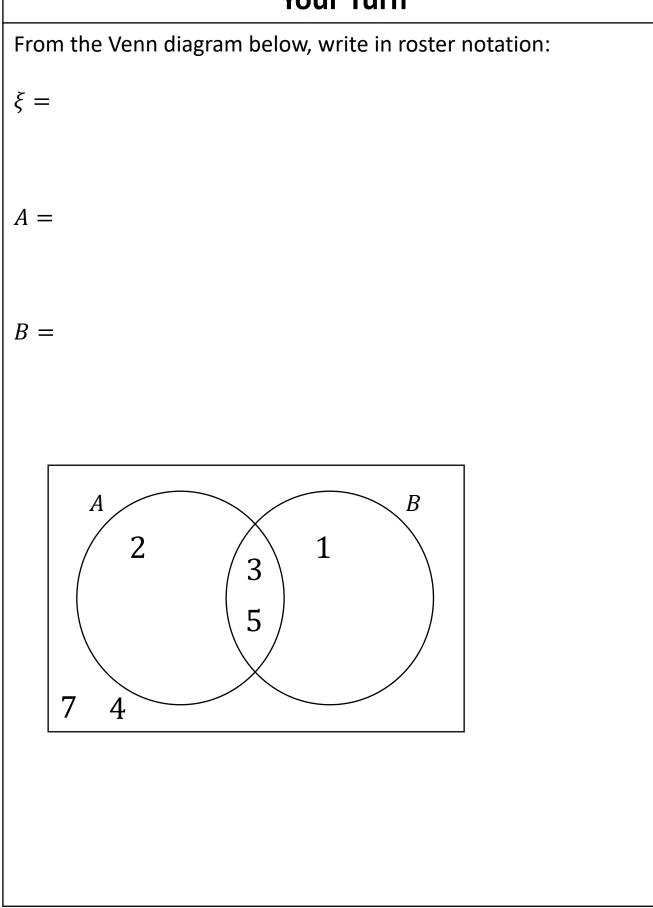

ξ[Multiple of 7 Even ξ[Multiple of 3 Multiple of 4

1

Over 10

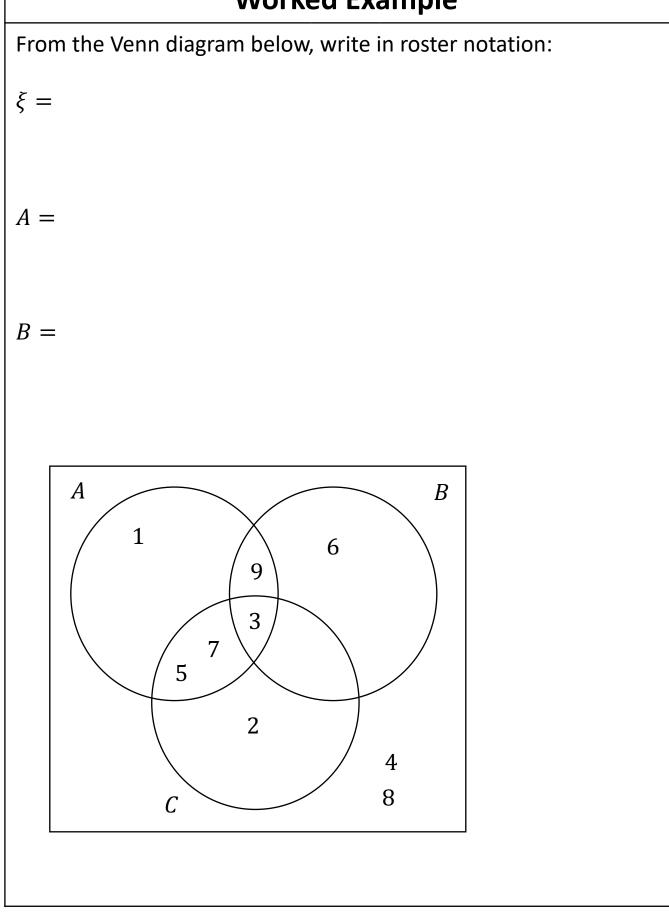


Worked Example	Your Turn
Represent as a Venn diagram: $\xi = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $A = \{0, 1, 3, 5, 8\}$ $B = \{2, 5, 8, 9\}$	Represent as a Venn diagram: $\xi = \{2, 3, 4, 5, 7, 11, 13, 17, 19\}$ $A = \{2, 3, 5, 11, 13\}$ $B = \{5, 7, 13, 17, 19\}$

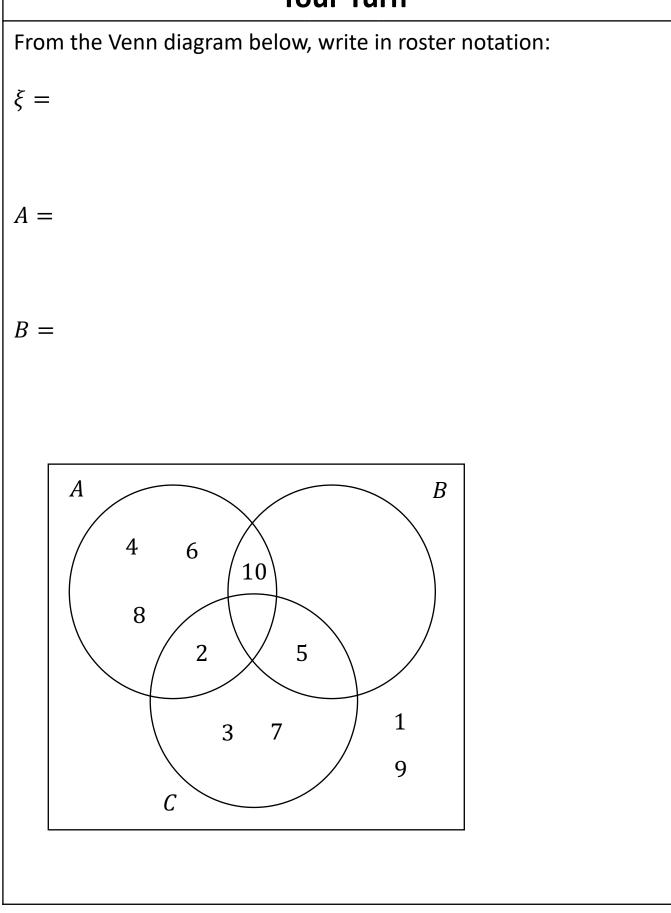

Worked Example	Your Turn							
Represent as a Venn diagram: ξ =Positive integers between 1 and 10 inclusive A = {Prime numbers} B = {Even numbers}	Represent as a Venn diagram: ξ = Integers between 0 and 5 inclusive A = {Prime numbers} B = {Odd numbers}							

Worked Example		Your Turn		
$\xi = \{Days \ of \ the \ week\}$ $A = \{Tuesday, Thursday\}$ $B = \{Days \ starting \ with \ S \ or \ T\}$ Draw a Venn diagram to represent this information.		<pre>ξ = {Months of the year} A = {Months starting with A} B = {Months with six letters} Draw a Venn diagram to represent this information.</pre>		

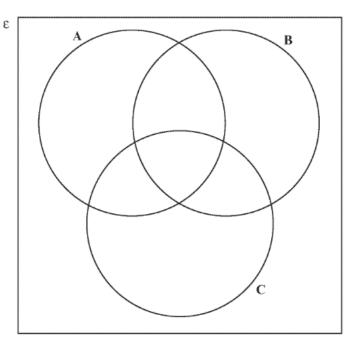
Your Turn


2.4 Venn Diagrams with Three Circles

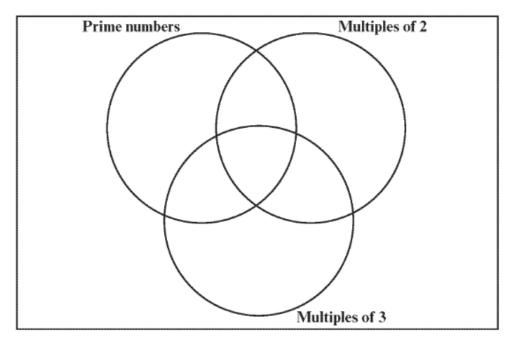
Worked Example


Represent in a Venn diagram: $\xi = \{$ *Integers between* 1 *and* 10 *inclusive* $\}$ $A = \{odd numbers\}$ $B = \{numbers greater than 4\}$ $C = \{numbers less than 3\}$

Your Turn Represent in a Venn diagram: $\xi = \{ Integers \ between \ 1 \ and \ 20 \ inclusive \}$ $A = \{ prime numbers \}$ $B = \{square numbers\}$ $C = \{even numbers\}$



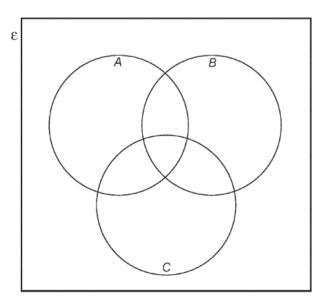
Your Turn



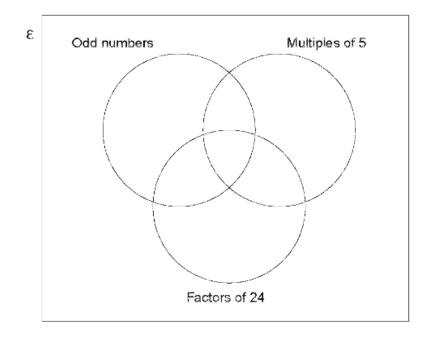
Given the following information, complete the Venn diagram shown below.

- $\varepsilon = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$
 - A is the set of factors of 24
 - **B** is the set of multiples of 3
 - C is the set of common factors of 30 and 70

2. (i) Place each of the whole numbers 42, 43, 44, 45, 46, 47, 48, 49, 50 in the correct positions in the Venn diagram.



3.


The universal set, $\varepsilon = \{22, 23, 24, 25, 26, 27, 28, 29, 30\}$. Within this universal set ε ,

- set A is the multiples of 2
- set B is the multiples of 4
- set C is the multiples of 5
- (a) Complete the Venn diagram.

[3]

4. Place the whole numbers 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 in the correct positions in the Venn diagram. [3]

3 Negative Numbers

3.1 Adding and Subtracting Negative Numbers

Worked Example	Your Turn
Calculate: a) $3-4=$	Calculate: a) $-5 + 7 =$
b) $-3 + 4 =$	b) -7 + 5 =
c) $-3-4 =$	c) 5 – 7 =
d) $-4 + 3 =$	d) -7 - 5 =
e) -4 - 3 =	e) -5 - 7 =

Worked Example	Your Turn
1) Calculate: a) $3 + (-4) =$	1) Calculate: a) $(-5) + (-7) =$
b) $4 + (-3) =$	b) $5 + (-7) =$
c) $(-3) + (-4) =$	c) $(-7) + (-5) =$
d) $(-4) + (-3) =$	d) $7 + (-5) =$
2) Calculate: a) $3 - (-4) =$	2) Calculate: a) $(-5) - (-7) =$
b) $4 - (-3) =$	b) $5 - (-7) =$
c) $(-3) - (-4) =$	c) $(-7) - (-5) =$
d) $(-4) - (-3) =$	d) $7 - (-5) =$

Dr Frost 155c and 155g

3.2 Multiplying Negative Numbers

Worked Example	Your Turn
Calculate: a) $3 \times (-4) =$	Calculate: a) $(-5) \times (-7) =$
b) $(-3) \times 4 =$	b) $5 \times (-7) =$
c) $(-3) \times (-4) =$	c) $(-7) \times (-5) =$
d) $(-4) \times (-3) =$	d) $(-5) \times 7 =$

3.3 Dividing Negative Numbers

Worked Example	Your Turn
Calculate: a) $12 \div (-3) =$	Calculate: a) $(-35) \div (-5) =$
b) $12 \div (-4) =$	b) $35 \div (-5) =$
c) $(-12) \div (-3) =$	c) $(-35) \div (-7) =$
d) $(-12) \div (-4) =$	d) $35 \div (-7) =$

3.4 Real Life Applications

Worked Example	Your Turn		
The temperature in Wolverhampton on Tuesday is – 15°C. On Wednesday, the temperature decreases by 5°C Find the temperature in Wolverhampton on Wednesda	The temperature in Lichfield on Saturday is -3° C. On Sunday, the temperature decreases by 6°C. Find the temperature in Lichfield on Sunday.		

Worked Example	Your Turn	
The temperature in Derby is -3° C. The temperature in Birmingham is 9°C. What is the difference between the temperature in Derby and the temperature in Birmingham?	The temperature in Birmingham is 8°C. The temperature in Newcastle upon Tyne is -5° C. What is the difference between the temperature in Birmingham and the temperature in Newcastle upon Tyne?	

3.5 Mixed Operations