PURE MATHEMATICS A level Practice Papers

PAPER N MARK SCHEME

1	Attempts to write a differential equation.	M1
	For example, $\frac{\mathrm{d}F}{\mathrm{d}t} \propto F$ or $\frac{\mathrm{d}F}{\mathrm{d}t} \propto -F$ is seen.	
	States $\frac{\mathrm{d}F}{\mathrm{d}t} = -kF$	A1
	TOTAL: 2 marks	

2
Finds
$$|a| = \sqrt{(4)^2 + (-1)^2 + (3)^2} = \sqrt{26}$$
M1

States $\cos \theta_y = -\frac{1}{\sqrt{26}}$
M1

Solves to find $\theta_y = 101.309...^\circ$. Accept awrt 101.3°
A1

TOTAL:
3 marks

3	Begins the proof by assuming the opposite is true.	B1
	'Assumption: there do exist integers <i>a</i> and <i>b</i> such that $25a + 15b = 1$ '	
U	inderstands that $25a + 15b = 1 \Longrightarrow 5a + 3b = \frac{1}{5}$	M 1
'A	as both 25 and 15 are multiples of 5, divide both sides by 5 to leave $5a + 3b = \frac{1}{5}$,	
U1 an	nderstands that if a and b are integers, then 5a is an integer, 3b is an integer d $5a + 3b$ is also an integer.	M1
Re	ecognises that this contradicts the statement that $5a + 3b = \frac{1}{5}$, as $\frac{1}{5}$ is not an integer.	B 1
Tł	herefore there do not exist integers a and b such that $25a + 15b = 1$ '	
	TOTAL: 4 marks	

4	Selects $\cos 2x \equiv 2\cos^2 x - 1$ as the appropriate trigonometric identity.	M1
	Manipulates the identity to the question: $\cos 12x \equiv 2\cos^2 6x - 1$	M1
	States that $\int (\cos^2 6x) dx = \frac{1}{2} \int (1 + \cos 12x) dx$	M1
	Makes an attempt to integrate the expression, x and $\sin x$ are seen.	M1
	Correctly states $\frac{1}{2}\left(x + \frac{1}{12}\sin 12x\right) + C$	A1
	TOTAL: 5 marks	

NOTES:

Student does not need to state '+C' to be awarded the third method mark.

Must be stated in the final answer.

5	Begins the proof by assuming the opposite is true.	B1
	'Assumption: there exists a product of two odd numbers that is even.'	
D	efines two odd numbers. Can choose any two different variables.	B1
٢L	et $2m + 1$ and $2n + 1$ be our two odd numbers.'	
Su	ccessfully multiplies the two odd numbers together:	M1
(2	$(m+1)(2n+1) \equiv 4mn + 2m + 2n + 1$	
Fa	ctors the expression and concludes that this number must be odd.	M1
47	$nn + 2m + 2n + 1 \equiv 2(2mn + m + n) + 1$	
2(2mn+m+n) is even, so $2(2mn+m+n)+1$ must be odd.	
М	akes a valid conclusion.	B1
Tł pr	is contradicts the assumption that the product of two odd numbers is even, therefore the oduct of two odd numbers is odd.	
	TOTAL: 5 marks	

NOTES: Alternative method

Assume the opposite is true: there exists a product of two odd numbers that is even. (B1)	
If the product is even then 2 is a factor.	(B1)
So 2 is a factor of at least one of the two numbers.	(M1)
So at least one of the two numbers is even.	(M1)
This contradicts the statement that both numbers are odd.	(B1)

6		States that:	M1
		$A(4-x)(x+5) + B(x-3)(x+5) + C(x-3)(4-x) \equiv 4x^2 + x - 23$	
	Fı	urther states that:	M1
	A	$(-x^{2} - x + 20) + B(x^{2} + 2x - 15) + C(-x^{2} + 7x - 12) \equiv 4x^{2} + x - 23$	
	E	quates the various terms.	M1*
	E	quating the coefficients of x^2 : $-A + B - C = 4$	
	E	quating the coefficients of x: $-A+2B+7C=1$	
	E	quating constant terms: $20A - 15B - 12C = -23$	
	M di	lakes an attempt to manipulate the expressions in order to find <i>A</i> , <i>B</i> and <i>C</i> . Obtaining two fferent equations in the same two variables would constitute an attempt.	M1*
	Fi	inds the correct value of any one variable:	A1*
	ei	ther $A = 2, B = 5$ or $C = -1$	
	Fi	inds the correct value of all three variables:	A1
	A	=2, B=5, C=-1	
		TOTAL: 6 marks	

NOTES: Alternative method

Uses the substitution method, having first obtain		
A(4-x)(x+5) + B(x-3)(x+5) + C(x-3)(4-x)	$\equiv 4x^2 + x - 23$	(M3 as above)
Substitutes $x = 4$ to obtain $9B = 45$	(M1)	
Substitutes $x = 3$ to obtain $8A = 16$	(M1)	
Substitutes $x = -5$ to obtain $-72C = 72$	(A1)	

7	Demonstrates an attempt to find the vectors \overrightarrow{AB} , \overrightarrow{AC} and \overrightarrow{BC}	M1
	Finds $\overrightarrow{AB} = (0, 4, -2), \overrightarrow{AC} = (5, 4, 8) \text{ and } \overrightarrow{BC} = (5, 0, 10)$	A1
	Demonstrates an attempt to find $ \overrightarrow{AB} , \overrightarrow{AC} $ and $ \overrightarrow{BC} $	M1
	Finds $ \vec{AB} = \sqrt{(0)^2 + (4)^2 + (-2)^2} = \sqrt{20}$ Finds $ \vec{AC} = \sqrt{(5)^2 + (4)^2 + (8)^2} = \sqrt{105}$	A1
	Finds $ \vec{BC} = \sqrt{(5)^2 + (0)^2 + (10)^2} = \sqrt{125}$	
	States or implies in a right-angled triangle $c^2 = a^2 + b^2$	M1
	States that $ \overrightarrow{AB} ^2 + \overrightarrow{AC} ^2 = \overrightarrow{BC} ^2$	B1
	TOTAL: 6 marks	

8a	Rearranges $x = 8(t+10)$ to obtain $t = \frac{x-80}{8}$	M1
	Substitutes $t = \frac{x - 80}{8}$ into $y = 100 - t^2$	M1
	For example, $y = 100 - \left(\frac{x - 80}{8}\right)^2$ is seen.	
	Finds $y = -\frac{1}{64}x^2 + \frac{5}{2}x$	A1
		(3 marks)
8b	Deduces that the width of the arch can be found by substituting $t = \pm 10$ into $x = 8(t+10)$	M1
	Finds $x = 0$ and $x = 160$ and deduces the width of the arch is 160 m.	A1
		(2 marks)
8b	Deduces that the greatest height occurs when $\frac{dy}{dt} = 0 \Rightarrow -2t = 0 \Rightarrow t = 0$	M1
	Deduces that the height is 100 m.	A1
		(2 marks)
	TOTAL: 7 marks	

9a	Finds $f(1.9) = -0.2188$ and $f(2.0) = (+)0.1606$	M1
	Change of sign and continuous function in the interval $[1.9, 2.0] \Rightarrow$ root	A1
		(2 marks)
9b	Makes an attempt to differentiate $f(x)$	M1
	Correctly finds $f'(x) = -9\sin^2 x \cos x + \sin x$	A1
	Finds $f(1.95) = -0.0348$ and $f'(1.95) = 3.8040$	M1
	Attempts to find x_1 : $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} \Rightarrow x_1 = 1.95 - \frac{-0.0348}{3.8040}$	M1
	Finds $x_1 = 1.959$	A1
		(5 marks)
	TOTAL: 7 marks	

NOTES: 9a

Minimum required is that answer states there is a sign change in the interval and that this implies a root in the given interval

10	Use Pythagoras' theorem to show that the length of $OB = 2\sqrt{3}$ or $OD = 2\sqrt{3}$ or states $BD = 4\sqrt{3}$	M1
	Makes an attempt to find $\angle DAB$ or $\angle DCB$. For example, $\cos \angle DAO = \frac{2}{4}$ is seen.	M1
	Correctly states that $\angle DAB = \frac{2\pi}{3}$ or $\angle DCB = \frac{2\pi}{3}$	A1
	Makes an attempt to find the area of the sector with a radius of 4 and a subtended angle of $\frac{2\pi}{3}$	M1
	For example, $A = \frac{1}{2} \times 4^2 \times \frac{2\pi}{3}$ is shown.	
	Correctly states that the area of the sector is $\frac{16\pi}{3}$	A1
	Recognises the need to subtract the sector area from the area of the rhombus in an attempt to find the shaded area. For example, $\frac{16\pi}{3} - 8\sqrt{3}$ is seen.	M1
	Recognises that to find the total shaded area this number will need to be multiplied by 2	M1
	For example, $2 \times \left(\frac{16\pi}{3} - 8\sqrt{3}\right)$	
	Using clear algebra, correctly manipulates the expression and gives a clear final answer of	A1
	$\frac{2}{3}\left(16\pi - 24\sqrt{3}\right)$	
	TOTAL: 8 marks	

1	1a Differentiates $u = 4t^{\frac{2}{3}}$ obtaining $\frac{du}{dt} = \frac{8}{3}t^{-\frac{1}{3}}$ and differentiates $v = t^2 + 1$ obtaining $\frac{dv}{dt} = 2t$	M1
	Makes an attempt to substitute the above values into the product rule formula: $\frac{dH}{dt} = \frac{v\frac{du}{dt} - u\frac{dv}{dt}}{v^2}$	M1
	Finds $\frac{dH}{dt} = \frac{\frac{8}{3}t^{\frac{5}{3}} + \frac{8}{3}t^{-\frac{1}{3}} - 8t^{\frac{5}{3}}}{\left(t^{2} + 1\right)^{2}}$	M1
	Fully simplifies using correct algebra to obtain $\frac{dH}{dt} = \frac{8(1-2t^2)}{3\sqrt[3]{t}(t^2+1)^2}$	A1
		(4 marks)
1	1b Makes an attempt to substitute $t = 2$ into $\frac{dH}{dt} = \frac{8(1-2t^2)}{3\sqrt[3]{t}(t^2+1)^2} = \frac{8(1-2(2)^2)}{3\sqrt[3]{2}(2^2+1)^2}$	M1 ft
	Correctly finds $\frac{dH}{dt} = -0.592$ and concludes that as $\frac{dH}{dt} < 0$ the toy soldier was decreasing in height after 2 seconds.	B1 ft*
		(2 marks)
11	c $\frac{dH}{dt} = \frac{8(1-2t^2)}{3\sqrt[3]{t}(t^2+1)^2} = 0$ or $8-16t^2 = 0$ at a turning point.	M1 ft
	Solves $8 - 16t^2 = 0$ to find $t = \frac{1}{\sqrt{2}}$ Can also state $t \neq -\frac{1}{\sqrt{2}}$	A1 ft
		(2 marks)
	TOTAL: 8 marks	

NOTES:

11b: Award ft marks for a correct answer using an incorrect answer from part **a**.

B1: Can also state
$$\frac{dH}{dt} < 0$$
 as the numerator of $\frac{dH}{dt}$ is negative and the denominator is positive.

12	a Clear attempt to reflect the negative part of the original graph in the <i>x</i> -axis.	M1
	Labels all three points correctly.	A1
	Fully correct graph. (see below)	A1
		(3 marks)
12b	Clear attempt to reflect the positive <i>x</i> part of the original graph in the <i>y</i> -axis.	M1
	Labels all three points correctly.	A1
	Fully correct graph. (see below)	A1
		(3 marks)
120	c Clear attempt to move the graph to the left 3 spaces.	
	Clear attempt to stretch the graph vertically by a factor of 2.	
	Fully correct graph. (see below)	
		(3 marks)
	TOTAL: 9 marks	

13a	Recognises that it is a geometric series with a first term $a = 100$ and common ratio $r = 1.05$	M1
А	ttempts to use the sum of a geometric series.	M1*
Fo	or example, $S_9 = \frac{100(1-1.05^9)}{1-1.05}$ or $S_9 = \frac{100(1.05^9-1)}{1.05-1}$ is seen.	
Fi	inds $S_9 = \pounds 1102.66$	A1
		(3 marks)
13b	States $\frac{100(1.05^n - 1)}{1.05 - 1} > 6000$ or $\frac{100(1 - 1.05^n)}{1 - 1.05} > 6000$	M1
В	egins to simplify. $1.05^n > 4$ or $-1.05^n < -4$	M1
A	pplies law of logarithms correctly	M1
n	$\log 1.05 > \log 4$ or $-n \log 1.05 < -\log 4$	
St	tates $n > \frac{\log 4}{\log 1.05}$	A1
		(4 marks)
13c	Uses the sum of an arithmetic series to state $\frac{29}{2} \left[100 + (28)d \right] = 6000$	M1
	Solves for d . $d = \pounds 11.21$	A1
		(2 marks)
	TOTAL: 9 marks	

NOTES: 13a:

M1 Award mark if attempt to calculate the amount of money after 1, 2, 3,....,8 and 9 months is seen.

1	4a Writes $(a+bx)^{\frac{1}{3}}$ as $a^{\frac{1}{3}} \left(1+\frac{b}{a}x\right)^{\frac{1}{3}}$	M1
	Expands $\left(1+\frac{b}{a}x\right)^{\frac{1}{3}}\left(1+\frac{b}{a}x\right)^{\frac{1}{3}} = 1 + \left(\frac{1}{3}\right)\left(\frac{b}{a}\right)x + \frac{\left(\frac{1}{3}\right)\left(-\frac{2}{3}\right)\left(\frac{b}{a}\right)^{2}x^{2}}{2} + \dots$	M1
	Simplifies:	M1
	$a^{\frac{1}{3}} \left(1 + \left(\frac{1}{3}\right) \left(\frac{b}{a}\right) x + \frac{\left(\frac{1}{3}\right) \left(-\frac{2}{3}\right) \left(\frac{b}{a}\right)^2 x^2}{2} + \dots \right)$	
	$=a^{\frac{1}{3}}\left(1+\frac{b}{3a}x-\frac{b^2}{9a^2}x^2\dots\right)$ Award mark even if x^2 term is not seen.	
	$=a^{\frac{1}{3}} + \frac{b}{3a^{\frac{2}{3}}}x - \frac{b^2}{9a^{\frac{5}{3}}}x^2 \dots$	
	Uses $a^{\frac{1}{3}} = 4$ to write $a = 64$.	A1
	Uses $\frac{b}{3a^{\frac{2}{3}}} = -\frac{1}{8}$ to write $b = -6$.	A1
		(5 marks)
1.	4b States expansion is valid for $\left -\frac{6}{64}x\right < 1$	B1 ft
	Solves to state $-\frac{32}{3} < x < \frac{32}{3}$	A1 ft
		(2 marks)
]	Substitutes $a = 64$ and $b = -6$ into $-\frac{b^2}{9a^{\frac{5}{3}}}$	M1 ft
	Finds $c = -\frac{1}{256}$	A1 ft
		(2 marks)
	TOTAL: 9 marks	

NOTES:

14a: Note x^2 term is not necessary to answer part **a**, so is not required. Will be needed to answer part **c**.

14b: Award marks for a correct conclusion using incorrect values of *a* and *b* from part **a**.

14c: Award marks for a correct answer using incorrect values of a and b from part a.

$\frac{15a}{\text{States}} \frac{dh}{dt} = \frac{dV}{dt} \times \frac{dh}{dV}$	M1
Deduces that $V = \pi r^2 h = 1600\pi h$	M1
Finds $\frac{dV}{dh} = 1600\pi$ and/or $\frac{dh}{dV} = \frac{1}{1600\pi}$	M1
States $\frac{\mathrm{d}V}{\mathrm{d}t} = 4000\pi - 50\pi h$	M1
Makes an attempt to find $\frac{dh}{dt} = (4000\pi - 50\pi h) \times \frac{1}{1600\pi}$	M1
Shows a clear logical progression to state $160 \frac{dh}{dt} = 400 - 5h$	A1
	(6 marks)
15b Separates the variables $\int \left(\frac{1}{400-5h}\right) dh = \int \frac{1}{160} dt$	M1
Finds $-\frac{1}{5}\ln(400-5h) = \frac{t}{160} + C$	A1
Uses the fact that $t = 0$ when $h = 50$ m to find C: $C = -\frac{1}{5}\ln(150)$	M1
Substitutes $h = 60$ into the equation: $-\frac{1}{5}\ln(400 - 300) = \frac{t}{160} - \frac{1}{5}\ln(150)$	M1
Uses law of logarithms to write: $\frac{\frac{1}{5}\ln(150) - \frac{1}{5}\ln(100) = \frac{t}{160}}{\Rightarrow \frac{1}{5}\ln\left(\frac{150}{100}\right) = \frac{t}{160}}$	M1
States correct final answer: $t = 32 \ln\left(\frac{3}{2}\right)$ minutes.	A1
	(6 marks)
TOTAL: 12 marks	

(TOTAL: 100 MARKS)