Mark scheme

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
4. 1a	Force = $4 \times 9.8 = 39.2$ (N). Accept 39.	M1	1.1b	4th
	Moment = force × distance	M1	1.1a	Calculate moments.
	Moment = $39.2 \times 3 = 117.6$ (N m). Accept 118.	A1	1.1b	
		(3)		
4.1b	$Moment = F \times 7 = 7F (Nm)$	A1	1.1b	4th Calculate moments.
		(1)		
4.1c	Equal moments	M1	1.1a	5th
	Solve for <i>F</i>	M1	1.1b	Calculate sums of moments.
	16.8 (N). Accept 17.	A1ft	1.1b	
		(3)		
(7 marks)				

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
5.3 a	Normal	B4	2.5	3rd
	Pull 30° tension			Draw force diagrams.
	Friction Weight			
	B1 for each correct force with correct label			
		(4)		
5.3b	$\operatorname{Res}(\to) F = P \cos 30$	M1	3.1b	5th
	$\frac{\sqrt{3}}{2}P$	A1	1.1b	Calculate resultant forces in perpendicular
	$\operatorname{Res}(\uparrow) R = 5g - P\sin 30$	M1	3.1b	directions.
	$5g - \frac{1}{2}P$	A1	1.1b	
		(4)		
5.3c	If $P = 20$, Substitute into R R = 39 N	M1 A1	1.1b 1.1b	7th The concept of limiting
	Substitute into F	M1	1.1b	equinorium.
	$F = 10\sqrt{3} \text{ or } 17.320 (N)$	Al	1.1b	
	If limiting equilibrium, $\mu = \frac{F}{R} = \frac{10\sqrt{3}}{39}$ or 0.444	M1	3.1b	
	So $\mu \ge \frac{10\sqrt{3}}{39}$ or $\mu \ge 0.44$	A1ft	3.2a	
		(6)		
				(14 marks)
S.3b Allow if g explicitly evaluated.				

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
8.3a	kv			3rd Draw force diagrams.
	g	R1	25	
	downwards and drag (kv) upwards.	B1 B1	2.5 2.5	
		(2)		
8.3b	Solve weight = drag for v	M1	3.1b	6th
	$v = \frac{g}{k}$	A1	1.1b	Work with systems of forces in equilibrium.
		(2)		
8.3c	Use of $F = ma$ with $m = 1$	M1	1.1b	5th
	$\frac{\mathrm{d}v}{\mathrm{d}t}$ is acceleration	A1	1.2	Use equations of motion to solve problems in
	Total downward force is $g - kv$	A1	3.4	familiar contexts.
		(3)		
8.3d	Use of differentiation to evaluate both sides.	M1	2.1	7th Solve general
	$LHS = \frac{dv}{dt} = g e^{-kt}$	A1	2.1	kinematics problems in less familiar contexts.
	RHS = $g - kv = g - k \cdot \frac{g}{k} (1 - e^{-kt}) = g e^{-kt}$	A1	2.1	
		(3)		

8.3e	As $t \to \infty, v \to \frac{g}{k}$, the terminal velocity	B1	3.2a	7th Solve general kinematics problems in less familiar contexts.
		(1)		
8.3f	Correct limitation	B1	3.5b	3rd Understand assumptions common in mathematical modelling.
		(1)		
(12 marks)				
Notes				

8.3a

B1 for correct weight force labelled.

B1 for correct drag force labelled.

8.3f

For example, upthrust due to water pressure, drag proportional to velocity only at low velocity.

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
7.1a	Figure 1	B4	2.5	3rd
	Force descriptions in words × 4(one mark each)			Draw force diagrams.
		(4)		
7 1h	Weight force is 9.8×6	M1	1.1b	$7^{ m th}$
/.10	= 58.8 (N) (Accept awrt 59)	A1	1.1b	The concept of
	Resolve forces in vertical direction.	M1	3.1b	limiting
	Normal reaction on floor is 58.8 (N) (Accept awrt 59)	A1	1.1b	equinorium.
	Take moments about base of ladder.	M1	3.1b	
	$58.8 \times 5 \sin 20 = N \times 10 \cos 20$	M1	1.1b	
	N = 10.70 (N) (Accept awrt 11)	A1	1.1b	
	Resolve forces in horizontal direction.	M1	3.1b	
	Friction force on floor is 10.70 (N) (Accept awrt 11)	A1	1.1b	
	$\mu R = 0.3 \times 58.8$	M1	1.1b	
	= 17.6 (N)	A1	1.1b	
	> <i>F</i>	A1	2.4	
	So does not slip.	A1	2.4	
		(13)		
	(17 marks)			