
SECTION B: MECHANICS J

Answer ALL questions.

5.1	An object rests on a rough surface and is pushed horizontally with force of 6 N. The mass of the object is 5 kg and the coefficient of friction between the object and the surface is 0.3.	
	a Draw a diagram showing all the forces acting on the object. Describe each of the forces using words and calculate their values.	(6 marks)
	b The horizontal force acting on the object is increased to <i>P</i> N. Find the largest value of <i>P</i> for which the object does not slip.	(3 marks)

- A ball, modelled as a particle moving freely under gravity, is launched at 6.2 2 m s^{-1} from the origin at angle 45° above the horizontal. (In this question, take $g = 10 \text{ m s}^{-2}$)
 - **a** Find the coordinates of the particle when it is at its maximum height. (10 marks)

On another occasion, the projectile is again is launched at 2 m $\rm s^{-1}$ from the origin at angle 45° above the horizontal. It travels a horizontal distance d m before hitting a vertical wall and then falling straight to the ground.

- **b** Find the maximum height attained if d = 0.1. Give your answer in cm. (5 marks)
- c Describe a possible limitation of this model.

(1 marks)

7.2 Three forces, \mathbf{F}_1 , \mathbf{F}_2 and \mathbf{F}_3 , act on a circular lamina of radius 5 cm. The origin is at the centre of the lamina.

$$\mathbf{F}_{1} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \text{N acts at the point} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \text{cm}$$
$$\mathbf{F}_{2} = \begin{pmatrix} 3 \\ 0 \end{pmatrix} \text{N acts at the point} \begin{pmatrix} -2 \\ 3 \end{pmatrix} \text{cm}$$
$$\mathbf{F}_{3} = \begin{pmatrix} f \\ 0 \end{pmatrix} \text{N acts at the point} \begin{pmatrix} -3 \\ -3 \end{pmatrix} \text{cm}.$$

The net force on the lamina is zero.

а	Find the value of f .	(2 marks)
b	Find the total moment about the origin. Give your answer in N m.	(4 marks)

8.1	The position of a particle is r metres. Initially $\mathbf{r} = \mathbf{i}$. The velocity of the
	particle at time t seconds is v m s ⁻¹ where v = t i + $3t^2$ j

a Find r in terms of <i>t</i> .	(3 marks)
b Find the acceleration of the particle when $t = 4$.	(4 marks)
c Find the position of the particle when it is 1 m from the <i>x</i> -axis.	(2 marks)