Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
5.1a	Normal reaction			3rd
	5 g			Draw force diagrams.
	Friction 6 N			
	y 5 g			
	Weight	В3	2.5	
	Force descriptions in words × 3 (one mark each) Force values ×3 (one mark each)	B3	1.1b	
		(6)		
5.1b	Limiting equilibrium means $F = \mu R$	M1	3.1b	7th
	$P = 0.3 \times 9.8 \times 5$	M1	1.1b	The concept of limiting
	P = 14.7 (N) accept awrt 15 (N)	A1	1.1b	equilibrium.
		(3)		
		1		(9 marks)
	Notes			
5.1b				
Allow i	f g explicitly evaluated.			

Pearson Edexcel AS and A level Mathematics

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
6.2a	Calculate initial velocities.	M1	3.1a	7th Solve problems in familiar contexts involving projectile motion.
	Initial horizontal velocity = $2 \times \cos 45 = \sqrt{2} \text{ (m s}^{-1}\text{)}.$	A1	1.1b	
	Initial vertical velocity = $2 \times \sin 45 = \sqrt{2} \text{ (m s}^{-1}\text{)}.$	A1	1.1b	
	Use of suvat equations.	M1	3.1a	
	$x = \sqrt{2}t$	A1	1.1b	
	$y = \sqrt{2}t - 5t^2$	A1	1.1b	
	Max occurs when $\frac{\mathrm{d}y}{\mathrm{d}t} = 0$	M1	2.4	
	$t = \frac{\sqrt{2}}{10}(s)$	A1	1.1b	
	then $x = 0.2$ (m)	A1	1.1b	
	and $y = 0.1 \text{ (m)}$	A1	1.1b	
		(10)		
6.2b	Max height when hits wall.	M1	3.1b	8th
	Solve for <i>t</i> .	M1	1.1b	Solve problems in unfamiliar contexts involving projectile motion.
	$t = \frac{1}{10\sqrt{2}}$	A1	1.1b	
	Substitute <i>t</i> into <i>y</i> .	M1	1.1b	
	y = 0.075 m = 7.5 cm	A1	3.2a	
		(5)		
6.2c	Any valid limitation. For example, the ball bounces off the wall.	B1	3.5b	3rd
				Understand assumptions common in mathematical modelling.
		(1)		
(16 marks)				

Pearson Edexcel AS and A level Mathematics

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
7.2a	No net force means $\mathbf{F}_3 = -(\mathbf{F}_1 + \mathbf{F}_2) = -\begin{pmatrix} 2 \\ 0 \end{pmatrix} - \begin{pmatrix} 3 \\ 0 \end{pmatrix} = \begin{pmatrix} -5 \\ 0 \end{pmatrix}$	M1	1.1b	4th
				Calculate resultant forces
	So $f = -5$	A1	2.2a	using vectors.
		(2)		
7.2b	Use of moment = force × perpendicular distance from pivot.	M1	1.1a	5 th
	$Moment = 2 \times 1 + 3 \times 3 + 5 \times 3$	M1	1.1b	Find resultant moments by
	= 26 N cm	A1ft	1.1b	considering direction.
	= 0.26 N m	A1ft	1.1b	
		(4)		
	(6 marks)			

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
8.1a	Integrate v w.r.t. time	M1	1.1a	8th
	$\mathbf{r} = \frac{1}{2}t^2\mathbf{i} + t^3\mathbf{j} + \mathbf{C}(\text{Allow omission of } \mathbf{C})$	A1	1.1b	Solve general kinematics problems using calculus of vectors.
	$\mathbf{r} = \left(\frac{1}{2}t^2 + 1\right)\mathbf{i} + t^3\mathbf{j}$	A1	1.1b	
		(3)		
8.1b	Differentiate v w.r.t. time	M1	1.1a	8th
	$\mathbf{a} = \mathbf{i} + 6t\mathbf{j}$	A1	1.1b	Solve general kinematics problems using calculus of vectors.
	Substitute $t = 4$ into a	M1	1.1b	
	When $t = 4$, $\mathbf{a} = \mathbf{i} + 24\mathbf{j} \text{ (m s}^{-2})$	A1	1.1b	
		(4)		
8.1c	j component is 1 when $t = 1$	M1	3.1a	8th
	When $t = 1$, $\mathbf{r} = \frac{3}{2}\mathbf{i} + \mathbf{j}$ (m)	A1	1.1b	Solve general kinematics problems in a range of contexts using vectors.
		(2)		
(9 marks)				