I1	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
a	$\log n = 0.7606 + 0.0635t$	M1	1.1a	6th
	$c = 10^{0.7606 + 0.0635t}$	M1	1.1b	Understand
	$c = 5.76 \times 1.16^{t}$ (3 s.f.)	A1	1.1b	exponential models in bivariate data.
		(3)		
b	<i>a</i> is a constant of proportionality.	A1	3.2a	6th
				Understand exponential models in bivariate data.
		(1)		
c	Extrapolation/out of the range of the data.	A1	2.4	4th Understand the concepts of interpolation and extrapolation.
		(1)		
			-	(5 marks)
	Notes			

Pearson **Progression Step I2** Scheme Marks AOs and Progress descriptor 3rd 0.05 2.5 **B1** a Draw and use tree **B1** 1.1b diagrams with 0.95 **B1** 1.1b 0.40 three branches and/or three levels. 0.02 0.35 0.98 0.25 0.03 0.97 Let $F \sim$ faulty (3) 5th b $P(B \cap F') = 0.35 \times 0.98$ **M1** 1.1b Understand and = 0.343A1 1.1b calculate conditional probabilities in the context of tree diagrams. (2) 5th $P(F) = 0.4 \times 0.05 + 0.35 \times 0.02 + 0.25 \times 0.03$ **M1** 1.1b c Understand and calculate = 0.0345A1 1.1b conditional probabilities in the context of tree diagrams. (2) $P(C|F) = \frac{P(C' \cap F)}{P(F)} = \frac{0.4 \times 0.05 + 0.35 \times 0.02}{0.0345} =$ 5th 0.027 **M1** d 3.1b Calculate 0.0345 A1ft 1.2 conditional probabilities using 0.7826... or $\frac{18}{23}$ (accept awrt 0.783) A1 1.1b formulae. (3) (10 marks) Notes

A level Statistics & Mechanics: Practice Paper I mark scheme

13	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
a	5% 170 μ 180 bell shaped	B1	1.2	5th Understand the basic features of the normal distribution including parameters, shape and notation.
	170, 180 on axis	B1	1.1b	
	5% and 20%	B1	1.1b	
		(3)		
b	P(X < 170) = 0.05	M1	3.3	7th
	$\frac{170 - \mu}{\sigma} = -1.6449$	B1	3.4	Find unknown means and/or standard
	$\mu = 170 + 1.6449\sigma$	B1	1.1b	deviations for
	P(X > 180) = 0.2	B1	3.4	normal distributions.
	$\mu = 180 - 0.8416\sigma$	M1	1.1b	
	Solving simultaneously gives:	A1	1.1b	
	$\mu = 176.615$ (awrt 176.6) and $\sigma = 4.021$ (awrt 4.02)	A1	1.1b	
		(7)		
c	P(All three are taller than 175 cm) = 0.656 ³	M1	1.1b	5th
	= 0.282 (using calculator) awrt 0.282	A1	1.1b	Understand informally the link to probability distributions.
		(2)		
				(12 marks)
	Notes			

14	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
a	The data seems to follow an exponential distribution.	B1	2.4	6th
				Understand exponential models in bivariate data.
		(1)		
b	r = 0.9735 is close to 1	B1	2.2a	2nd
	which gives a strong positive correlation.	B1	2.4	Know and understand the language of correlation and regression.
		(2)		
c	Model is a good fit with a reason. For example, Very strong positive linear correlation between t and $\log_{10} p$. The transformed data points lie close (enough) to a straight line.	B2	3.2a	6th Understand exponential models in bivariate data.
		(2)		
		- 1	1	(5 marks)
	Notes			
c B0 for j	ust stating the model is a good fit with no reason.			

15	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
a	$\frac{11}{20}$ T	B1	2.5	2nd
		B1	1.1b	Draw and use simple tree
	$\begin{array}{c} \frac{3}{5} \\ \frac{9}{20} \\ T' \\ \frac{2}{2} \\ x \\ T \end{array}$	B1	1.1b	diagrams with two branches and two levels.
	$\frac{2}{5}$ D' $1-x$ T'			
	T = hand assignments in on time, D = start assignments on the day they are issued			
		(3)		
b i	$\mathbf{P}(T \cap D) = \mathbf{P}(T D) \times \mathbf{P}(D)$	M1	3.1b	5th
	$=\frac{3}{5} \times \frac{11}{20}$ $=\frac{33}{100} \text{ or } 0.33$	A1	1.1b	Understand and calculate conditional probabilities in the context of tree
	100			diagrams.
		(2)		
b ii	$\frac{3}{5} \times \frac{11}{20} + x \times \frac{2}{5} = \frac{2}{3}$	M1	3.1b	5th Understand and calculate conditional probabilities in the context of tree diagrams.
	$x = \frac{101}{120}$ or 0.841	A1	1.1b	
	$P(T' \cap D') = = \frac{2}{5} \left(1 - \frac{101}{120} \right)$	M1	1.1b	
	$=\frac{19}{300}$ or 0.0633 (accept awrt 0.0633)	A1	1.1b	
		(4)		

c	$P(T \cap D) = \frac{33}{100} \neq P(T) \times P(D) = \frac{2}{3} \times \frac{3}{5} = \frac{2}{5}$	M1	2.1	4th Understand and use the definition
	So, T and D are not statistically independent.	A1	2.4	of independence in probability calculations.
		(2)		
				(11 marks)
	Notes			
b ii Alte	ernative solution			
$P(T' \cap I)$	$D') = 1 - P(T \cup D)$			
$P(T \cup D)$	$=\frac{2}{3} + \frac{3}{5} - \frac{33}{100}$			
	$=\frac{281}{300}$			
$P(T' \cap I)$	$D') = 1 - \frac{281}{300} = \frac{19}{300}$			

b $H_0: \rho$ Critic 0.714 There numb	ritical value is the point (or points) on the scale of the test istic beyond which we reject the null hypothesis. $\rho = 0, H_1 : \rho > 0$ ical value = 0.5494 14 > 0.5494 (test statistic in critical region) re is evidence to reject H ₀ re is evidence that there is a positive correlation between the aber of vehicles and road traffic accidents. -7.0 + 0.02v	B1 (1) B1 M1 A1 (3) B1	1.2 2.5 1.1b 2.2b	5th Understand the language of hypothesis testing. 6th Carry out a hypothesis test for zero correlation. 4th
b $H_0: \rho$ Critic 0.714 There numb c $r = -7$	$\rho = 0, H_1 : \rho > 0$ ical value = 0.5494 4 > 0.5494 (test statistic in critical region) re is evidence to reject H ₀ re is evidence that there is a positive correlation between the aber of vehicles and road traffic accidents.	B1 M1 A1 (3)	1.1b 2.2b	language of hypothesis testing. 6th Carry out a hypothesis test for zero correlation.
c $r = -r$	ical value = 0.5494 4 > 0.5494 (test statistic in critical region) re is evidence to reject H ₀ re is evidence that there is a positive correlation between the aber of vehicles and road traffic accidents.	B1 M1 A1 (3)	1.1b 2.2b	Carry out a hypothesis test for zero correlation.
c $r = -r$	ical value = 0.5494 4 > 0.5494 (test statistic in critical region) re is evidence to reject H ₀ re is evidence that there is a positive correlation between the aber of vehicles and road traffic accidents.	M1 A1 (3)	1.1b 2.2b	Carry out a hypothesis test for zero correlation.
$c \qquad r = -r$	4 > 0.5494 (test statistic in critical region) re is evidence to reject H ₀ re is evidence that there is a positive correlation between the aber of vehicles and road traffic accidents.	A1 (3)	2.2b	hypothesis test for zero correlation.
c <i>r</i> = -7	re is evidence that there is a positive correlation between the aber of vehicles and road traffic accidents.	(3)		
	-7.0 + 0.02v		1.2	4th
	-7.0 + 0.02v	B1	1.2	4th
d Road				1 111
d Road				Make predictions using the regression line within the range of the data.
d Road		(1)		
	d fatalities per 100 000 population.	B1	1.2	2nd
				Know and understand the language of correlation and regression.
		(1)		
e Outsi	side the range of the data used in the model.	B1	3.5b	4th
or This w				Understand the concepts of interpolation and extrapolation.
	would require extrapolation.	(1)		
	would require extrapolation.			(7 marks)

17	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
a	Moment from bus = $5000 \times 2 \times g$	M1	3.1a	5th
	$= 10000g({ m N}{ m m})$	A1	1.1b	Find resultant moments by
	Moment from gold = $1000 \times 12 \times g$	M1	3.1b	considering direction.
	$= 12\ 000g\ ({ m N}{ m m})$	A1	1.1b	
	Moment from people = $70 \times 8 \times n \times g$	M1	3.1a	
	$= 560 ng (\mathrm{N} \mathrm{m})$	A1	1.1b	
	Total moment = $(22\ 000 - 560n)g(Nm)$	A1	1.1b	
		(7)		
b	Forming an equation or inequality for <i>n</i> and solving to find $(n = 39.28)$	M1	1.1b	5th Solve equilibrium
	Need 40 people.	A1	3.2a	problems involving horizontal bars.
		(2)		
c	New moment from gold and extra person is $1070 \times 12 \times g(N)$	M1	3.1a	5th
	New total moment = $(22840 - 560n)g$ (N m)	M1	1.1b	Solve equilibrium problems
	n = 40.78	A1	3.2a	involving horizontal bars.
	42 people (including the extra)	A1	2.4	
		(4)		
				(13 marks)

18	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
a	Net force is $\mathbf{C} + \mathbf{W}$	M1	3.1b	4 th
	$= \begin{pmatrix} 5\\-1 \end{pmatrix}$	A1	1.1b	Calculate resultant forces using vectors.
		(2)		
b	Use of Newton's 2nd Law.	M1	3.1b	5th
	$\mathbf{a} = \frac{F}{m}$	M1	1.1b	Use Newton's second law to model motion in
	$= \begin{pmatrix} 50\\-10 \end{pmatrix}$	A1	1.1b	two directions.
		(3)		
c	$\mathbf{s} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$	M1	1.1a	5th Use the equations
	$= \begin{pmatrix} 1 \\ 1 \end{pmatrix} t + \frac{1}{2} \begin{pmatrix} 50 \\ -10 \end{pmatrix} t^{2}$	M1	1.1b	of motion to solve problems in familiar contexts.
	$x = t + 25t^2$	A1	1.1b	
	$y = t - 5t^2$	A1	1.1b	
		(4)		
d	Substitute $t = 10$	M1	3.1b	5th
	<i>x</i> = 2510	A1	1.1b	Use the equations of motion to solve
	<i>y</i> = -490	A1	1.1b	problems in familiar contexts.
	Distance travelled = $\sqrt{2510^2 + (-490)^2}$	M1	1.1a	
	2557.38(m) (Accept awrt 2560)	A1	3.2a	
		(5)		
	·			(14 marks)
	Notes			

19	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
a	Figure 1			4th
				Calculate moments.
	x y_{80g} Force labels one mark each Allow explicit evaluation with g.	B2	2.5	
		(2)		
b	Alice: Moment = $2 \times 50 \times g$	M1	1.1b	5th
	= 100g (Nm)	A1	1.1b	Calculate sums of
	Bob: Moment = $(2 - x) \times 80 \times g$	M1	3.4	moments.
	= 80(2 - x)g(Nm)	A1	1.1b	
	Total clockwise moment = $20g(4x - 3)$ (N m)	A1	1.1b	
		(5)		
c	Equating to 0 and solving	M1	3.4	5th
	x = 0.75 (m)	A1	1.1b	Solve equilibrium problems involving horizontal bars.
		(2)		
d	Identifying 2 as a limit	M1	2.4	7th
	So tilts towards Alice when $0.75 < x \le 2$	A1	2.2a	Solve problems involving bodies on the point of tilting.
		(2)		
e	Any valid limitation. For example,	A1	3.5	3rd
	Pivot not a point. Alice can't sit exactly on the end. The see-saw might bend.			Understand assumptions common in mathematical modelling.
		(1)		

aUse of $s = ut + \frac{1}{2}at^2$ Initial velocity is $(\cos \theta, x)$ $x = t \cos \theta$ $y = t \sin \theta - 5t^2$ bSolve $y = 0$ for t $t(\sin \theta - 5t) = 0$ $t = 0$ or $t = \frac{\sin \theta}{5}$ $t = 0$ is initial position so $x = \frac{\cos \theta \sin \theta}{5} = \frac{2 \sin \theta \cos \theta}{10}$ cSketch of $\sin 2\theta$ or otherMaximum is at $\theta = 45^\circ$ dCorrect limitation. For each or each of the set	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
$x = t \cos \theta$ $y = t \sin \theta - 5t^{2}$ $y = t \sin \theta - 5t^{2}$ $t (\sin \theta - 5t) = 0$ $t = 0 \text{ or } t = \frac{\sin \theta}{5}$ $t = 0 \text{ is initial position so}$ $x = \frac{\cos \theta \sin \theta}{5} = \frac{2 \sin \theta \cos \theta}{10}$ $x = \frac{\cos \theta \sin \theta}{5} = \frac{2 \sin \theta \cos \theta}{10}$ $x = \frac{\cos \theta \sin \theta}{5} = \frac{2 \sin \theta \cos \theta}{10}$		M1	1.1a	6th Resolve velocity
$y = t \sin \theta - 5t^{2}$ $y = t \sin \theta - 5t^{2}$ $t (\sin \theta - 5t) = 0$ $t = 0 \text{ or } t = \frac{\sin \theta}{5}$ $t = 0 \text{ is initial position so}$ $x = \frac{\cos \theta \sin \theta}{5} = \frac{2 \sin \theta \cos \theta}{10}$ $x = \frac{\cos \theta \sin \theta}{5} = \frac{2 \sin \theta \cos \theta}{10}$ $x = \frac{\cos \theta \sin \theta}{5} = \frac{2 \sin \theta \cos \theta}{10}$	$\sin \theta$)	A1	3.4	into horizontal and vertical
b Solve $y = 0$ for t $t(\sin \theta - 5t) = 0$ $t = 0$ or $t = \frac{\sin \theta}{5}$ t = 0 is initial position so $x = \frac{\cos \theta \sin \theta}{5} = \frac{2 \sin \theta \cos \theta}{10}$ c Sketch of $\sin 2\theta$ or other Maximum is at $\theta = 45^{\circ}$		A1	1.1b	components.
$t(\sin\theta - 5t) = 0$ $t = 0 \text{ or } t = \frac{\sin\theta}{5}$ $t = 0 \text{ is initial position so}$ $x = \frac{\cos\theta\sin\theta}{5} = \frac{2\sin\theta\cos\theta}{10}$ c Sketch of sin 2 θ or other Maximum is at $\theta = 45^{\circ}$		B1	1.1b	
$t(\sin\theta - 5t) = 0$ $t = 0 \text{ or } t = \frac{\sin\theta}{5}$ $t = 0 \text{ is initial position so}$ $x = \frac{\cos\theta\sin\theta}{5} = \frac{2\sin\theta\cos\theta}{10}$ c Sketch of sin 2 θ or other Maximum is at $\theta = 45^{\circ}$		(4)		
$t = 0 \text{ or } t = \frac{\sin \theta}{5}$ $t = 0 \text{ is initial position so}$ $x = \frac{\cos \theta \sin \theta}{5} = \frac{2 \sin \theta \cos \theta}{10}$ c Sketch of sin 2 θ or other Maximum is at $\theta = 45^{\circ}$		M1	3.4	5th
c Sketch of sin 2 θ or other Maximum is at $\theta = 45^{\circ}$		A1	1.1b	Model horizontal projection under
$x = \frac{\cos\theta\sin\theta}{5} = \frac{2\sin\theta\cos\theta}{10}$ c Sketch of sin 2 θ or other Maximum is at $\theta = 45^{\circ}$		A1	1.1b	gravity.
c Sketch of sin 2θ or other Maximum is at $\theta = 45^{\circ}$	$\theta t = \frac{\sin \theta}{5}$	M1	2.4	
Maximum is at $\theta = 45^{\circ}$	$\frac{\sin \theta}{\sin \theta} = \frac{\sin 2\theta}{10}$	A1	1.1b	
Maximum is at $\theta = 45^{\circ}$		(5)		
	legitimate method.	M1	2.2a	6th
d Correct limitation. For e		A1	2.4	Resolve velocity into horizontal and vertical components.
d Correct limitation. For e		(2)		
	xample, air resistance.	B1	3.5b	3rd Understand assumptions common in mathematical modelling.
		(1)		
· · · · · · · · · · · · · · · · · · ·				(12 marks)

I11	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
a	Normal reaction Weight			3rd Draw force diagrams.
	One correct force with correct label. Two more correct forces with correct labels.	B1	2.5	
	I wo more correct forces with correct fabels.	B1	2.5	
		(2)		
b	Resolve vertically.	M1	1.1b	5th
	Weight = $8g$	M1	1.1b	Calculate resultant forces in
	= 78.4	M1	1.1b	perpendicular directions.
	Vertical part of normal reaction is $2R \cos 40$	A1	1.1b	
	$2R\cos 40 = 78.4$	M1	1.1b	
	Solve for <i>R</i>	M1	1.1b	
	R = 51.171 (N) accept awrt 51	A1	1.1b	
		(7)		
				(9 marks)