1	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
	States that:	M1	2.2a	7th
	$A(x-4)(3x+1) + B(3x+1) + C(x-4)(x-4) \equiv 18x^2 - 98x + 78$			Decompose algebraic
	Further states that: $A(3x^2 - 11x - 4) + B(3x + 1) + C(x^2 - 8x + 16) \equiv 18x^2 - 98x + 78$	M1	1.1b	fractions into partial fractions – repeated factors.
	Equates the various terms. Equating the coefficients of x^2 : $3A + C = 18$ Equating the coefficients of x : $-11A + 3B - 8C = -98$ Equating constant terms: $-4A + B + 16C = 78$	M1	2.2a	
	Makes an attempt to manipulate the expressions in order to find A , B and C . Obtaining two different equations in the same two variables would constitute an attempt.	M1	1.1b	-
	Finds the correct value of any one variable: either $A = 4$, $B = -2$ or $C = 6$	A1	1.1b	
	Finds the correct value of all three variables: A = 4, B = -2, C = 6	A1	1.1b	
	·		-	(6 marks)

Notes

Alternative method

Uses the substitution method, having first obtained this equation:

$$A(x-4)(3x+1) + B(3x+1) + C(x-4)(x-4) \equiv 18x^2 - 98x + 78$$

Substitutes x = 4 to obtain 13B = -26

Substitutes
$$x = -\frac{1}{3}$$
 to obtain $\frac{169}{9}C = \frac{338}{3} \Rightarrow C = \frac{1014}{169} = 6$

Equates the coefficients of x^2 : 3A + C = 18

Substitutes the found value of *C* to obtain 3A = 12

2	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
	Differentiates 4^x to obtain $4^x \ln 4$	M1	1.1b	7th
	Differentiates $2xy$ to obtain $2x\frac{dy}{dx} + 2y$	M1	2.2a	Differentiate simple functions defined implicitly.
	Rearranges $4^{x} \ln 4 = 2x \frac{dy}{dx} + 2y$ to obtain $\frac{dy}{dx} = \frac{4^{x} \ln 4 - 2y}{2x}$	A1	1.1b	
	Makes an attempt to substitute (2, 4)	M1	1.1b	
	States fully correct final answer: $4\ln 4 - 2$	A1	1.1b	
	Accept ln 256 – 2			
(5 marks)				
Notes				

3	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
(a)	Correctly states $\cos(5x+2x) \equiv \cos 5x \cos 2x - \sin 5x \sin 2x$	M1	1.1b	6th
	Correctly states $\cos(5x-2x) \equiv \cos 5x \cos(-2x) - \sin 5x \sin(-2x)$ or states $\cos(5x-2x) \equiv \cos 5x \cos(2x) + \sin 5x \sin(2x)$	M1	1.1b	Integrate using trigonometric identities.
	Adds the two above expressions and states $\cos 7x + \cos 3x \equiv 2\cos 5x \cos 2x$	A1	1.1b	
		(3)		
(b)	States that $\int (\cos 5x \cos 2x) dx = \frac{1}{2} \int (\cos 7x + \cos 3x) dx$	M1	2.2a	6th Integrate
	Makes an attempt to integrate. Changing cos to sin constitutes an attempt.	M1	1.1b	functions of the form $f(ax + b)$.
	Correctly states the final answer $\frac{1}{14}\sin 7x + \frac{1}{6}\sin 3x + C$ o.e.	A1	1.1b	
		(3)		
(6 marks)				
Notes (b) Student does not need to state '+C' to be awarded the first method mark. Must be stated in the final answer.				

4	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
(a)	Makes an attempt to substitute $t = 0$ into	M1	3.1a	6th
	T(t) = $T_R + (90 - T_R) e^{-\frac{1}{20}t}$. For example, T(t) = $T_R + (90 - T_R) e^0$ or T(t) = $T_R + (90 - T_R)$ is seen.			Set up and use exponential models of growth
	Concludes that the T_R terms will always cancel at $t = 0$, therefore the room temperature does not influence the initial coffee temperature.	B1	3.5a	and decay.
		(2)		
(b)	Makes an attempt to substitute $T_R = 20$ and $t = 10$ into	M1	1.1b	6th
	T(t) = $T_R + (90 - T_R)e^{-\frac{1}{20}t}$. For example, T(10) = $20 + (90 - 20)e^{-\frac{1}{20}(10)}$ is seen.			Set up and use exponential models of growth and decay.
	Finds $T(10) = 62.457^{\circ}C$. Accept awrt 62.5° .	A1	1.1b	
		(2)		
(4 marks)				
Notes				

5	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor		
	Begins the proof by assuming the opposite is true.	B1	3.1	7th		
	'Assumption: there exists a number <i>n</i> such that <i>n</i> is odd and $n^3 + 1$ is also odd.'			Complete proofs using proof by		
	Defines an odd number.	B1	2.2a	contradiction.		
	'Let $2k + 1$ be an odd number.'					
	Successfully calculates $(2k+1)^3 + 1$	M1	1.1b			
	$(2k+1)^3 + 1 \equiv (8k^3 + 12k^2 + 6k + 1) + 1 \equiv 8k^3 + 12k^2 + 6k + 2$					
	Factors the expression and concludes that this number must be even.	M1	1.1b			
	$8k^{3} + 12k^{2} + 6k + 2 \equiv 2(4k^{3} + 6k^{2} + 3k + 1)$					
	$2(4k^3+6k^2+3k+1)$ is even.					
	Makes a valid conclusion.	B1	2.4			
	This contradicts the assumption that there exists a number n such that n is odd and $n^3 + 1$ is also odd, so if n is odd, then $n^3 + 1$ is even.					
	(5 marks)					

Notes

Alternative method

Assume the opposite is true: there exists a number *n* such that *n* is odd and $n^3 + 1$ is also odd. (B1)

If $n^3 + 1$ is odd, then n^3 is even. (B1)

So 2 is a factor of n^3 . (M1)

This implies 2 is a factor of *n*. (M1)

This contradicts the statement *n* is odd. (**B1**)

6	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
	Recognises that the identity $\sin^2 t + \cos^2 t \equiv 1$ can be used to find the cartesian equation.	M1	2.2a	6th Convert between	
	States $\sin t = \frac{y}{2}$ or $\sin^2 t = \frac{y^2}{4}$ Also states $\cos^2 t = \frac{1}{x-1}$	M1	1.1b	parametric equations and cartesian forms using trigonometry.	
	Substitutes $\sin^2 t = \frac{y^2}{4}$ and $\cos^2 t = \frac{1}{x-1}$ into $\sin^2 t + \cos^2 t \equiv 1$ $\frac{y^2}{4} + \frac{1}{x-1} = 1 \Longrightarrow \frac{y^2}{4} = \frac{x-2}{x-1}$	M1	1.1b		
	Solves to find $y = \sqrt{\frac{4x-8}{x-1}}$, accept $y = \sqrt{\frac{8-4x}{1-x}}$, $x < 1$ or $x \ddot{0} 2$	A1	1.1b		
(4 marks)					
Notes					

7	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
(a)	Understands that for the series to be convergent $ r < 1$ or states	M1	2.2a	6th	
	-4x < 1			convergent	
	Correctly concludes that $ x < \frac{1}{4}$. Accept $-\frac{1}{4} < x < \frac{1}{4}$	A1	1.1b	geometric series and the sum to infinity.	
		(2)			
(b)	Understands to use the sum to infinity formula. For example,	M1	2.2a	5th	
	states $\frac{1}{1+4x} = 4$			Understand sigma notation.	
	Makes an attempt to solve for <i>x</i> . For example, $4x = -\frac{3}{4}$ is seen.	M1	1.1b		
	States $x = -\frac{3}{16}$	A1	1.1b		
		(3)			
(5 marks)					
Notes					

8	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
(a)	Finds $f(1.9) = -0.2188$ and $f(2.0) = (+)0.1606$	M1	1.1b	5th	
	Change of sign and continuous function in the interval $[1.9, 2.0] \Rightarrow$ root	A1	2.4	Use a change of sign to locate roots.	
		(2)			
(b)	Makes an attempt to differentiate $f(x)$	M1	2.2a	6th	
	Correctly finds $f'(x) = -9\sin^2 x \cos x + \sin x$	A1	1.1b	Solve equations approximately using the Newton- Raphson method.	
	Finds $f(1.95) = -0.0348$ and $f'(1.95) = 3.8040$	M1	1.1b		
	Attempts to find x_1	M1	1.1b		
	$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} \Longrightarrow x_1 = 1.95 - \frac{-0.0348}{3.8040}$				
	Finds $x_1 = 1.959$	A1	1.1b		
		(5)			
(7 marks)					
(a) Min	Notes				

(a) Minimum required is that answer states there is a sign change in the interval and that this implies a root in the given interval.

9	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor		
	States $-a + b = 10$ and $7a + 5b = 2$	M1	2.2a	6th		
	Makes an attempt to solve the pair of simultaneous equations. Attempt could include making a substitution or multiplying the first equation by 5 or by 7.	M1	1.1b	Solve geometric problems using vectors in 3 dimensions		
	Finds $a = -4$	A1	1.1b			
	Find $b = 6$	A1	1.1b			
	States $-2abc = -96$	M1	2.2a			
	Finds $c = -2$	A1	1.1b			
	(6 marks)					

Notes

10	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor		
	Begins the proof by assuming the opposite is true.	B1	3.1	7th		
	'Assumption: there exist positive integer solutions to the statement $x^2 - y^2 = 1$ '			Complete proofs using proof by contradiction.		
	Sets up the proof by factorising $x^2 - y^2$ and stating $(x - y)(x + y) = 1$	M1	2.2a			
	States that there is only one way to multiply to make 1: $1 \times 1 = 1$ and concludes this means that: x - y = 1	M1	1.1b			
	x + y = 1					
	Solves this pair of simultaneous equations to find the values of x and y : $x = 1$ and $y = 0$	M1	1.1b			
	Makes a valid conclusion. x = 1, y = 0 are not both positive integers, which is a contradiction to the opening statement. Therefore there do not exist positive integers x and y such that $x^2 - y^2 = 1$	B1	2.4			
(5 marks)						
	Notes					

11	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
	Understands the need to complete the square, and makes an attempt to do this. For example, $(x-4)^2$ is seen.	M1	2.2a	6th Find the domain
	Correctly writes $g(x) = (x-4)^2 - 9$	A1	1.1b	inverse functions.
	Demonstrates an understanding of the method for finding the inverse is to switch the <i>x</i> and <i>y</i> . For example, $x = (y-4)^2 - 9$ is seen.	B1	2.2a	
	Makes an attempt to rearrange to make <i>y</i> the subject. Attempt must include taking the square root.	M1	1.1b	
	Correctly states $g^{-1}(x) = \sqrt{x+9} + 4$	A1	1.1b	
	Correctly states domain is $x > -9$ and range is $y > 4$	B 1	3.2b	
(6 marks)				
Notes				

12	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
	States that:	M1	2.2a	6th
	$A(4-x)(x+5) + B(x-3)(x+5) + C(x-3)(4-x) \equiv 4x^2 + x - 23$			Decompose algebraic
	Further states that: $A(-x^{2} - x + 20) + B(x^{2} + 2x - 15) + C(-x^{2} + 7x - 12) \equiv 4x^{2} + x - 23$	M1	1.1b	fractions into partial fractions – three linear factors.
	Equates the various terms. Equating the coefficients of x^2 : $-A + B - C = 4$ Equating the coefficients of x : $-A + 2B + 7C = 1$ Equating constant terms: $20A - 15B - 12C = -23$	M1*	2.2a	
	Makes an attempt to manipulate the expressions in order to find A , B and C . Obtaining two different equations in the same two variables would constitute an attempt.	M1*	1.1b	
	Finds the correct value of any one variable: either $A = 2, B = 5$ or $C = -1$	A1*	1.1b	
	Finds the correct value of all three variables: A = 2, B = 5, C = -1	A1	1.1b	
	·			(6 marks)

Notes

Alternative method

Uses the substitution method, having first obtained this equation:

 $A(4-x)(x+5) + B(x-3)(x+5) + C(x-3)(4-x) \equiv 4x^2 + x - 23$

Substitutes x = 4 to obtain 9B = 45 (M1)

Substitutes x = 3 to obtain 8A = 16 (M1)

Substitutes x = -5 to obtain -72C = 72 (A1)

13	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
(a)	Finds $\frac{dy}{dx} = 3x^2 + 12x - 12$	M1	1.1b	7th
	Finds $\frac{d^2 y}{dx^2} = 6x + 12$	M1	1.1b	Use second derivatives to solve problems of concavity,
	States that $\frac{d^2 y}{dx^2} = 6x + 12 \le 0$ for all -5 Ñ x Ñ -3 and concludes	B1	3.2a	points of inflection.
	this implies C is concave over the given interval.			
		(3)		
(b)	States or implies that a point of inflection occurs when $\frac{d^2 y}{dx^2} = 0$	M1	3.1a	7th Use second
	Finds $x = -2$	A1	1.1b	derivatives to solve problems of concavity, convexity and points of inflection.
	Substitutes $x = -2$ into $y = x^3 + 6x^2 - 12x + 6$, obtaining $y = 46$	A1	1.1b	
		(3)		
(6 marks)				
Notes				

14	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
	Makes an attempt to find $\int \sin 4x (1 - \cos 4x)^3 dx$. Raising the	M1	2.2a	6th
	power by 1 would constitute an attempt.			Integrate using the reverse chain
	States a fully correct answer	M1	2.2a	rule.
	$\int \sin 4x (1 - \cos 4x)^3 dx = \frac{1}{16} (1 - \cos 4x)^4 + C$			
	Makes an attempt to substitute the limits $\frac{1}{16} \left[\left(1 - 0 \right)^4 - \left(1 - \frac{1}{2} \right)^4 \right]$	M1 ft	1.1b	
	Correctly states answer is $\frac{15}{256}$	A1 ft	1.1b	
(4 marks)				
Notes				
Student does not need to state '+C' to be awarded the second method mark. Award ft marks for a correct answer using an incorrect initial answer.				

15	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
(a)	Makes an attempt to set up a long division. For example,	M1	2.2a	7th
	$2x^2 - x - 1 \overline{\smash{\big)}} 4x^2 - 4x - 9$ is seen.			Expand rational functions using partial fraction
	Long division completed so that a 2 is seen in the quotient and a remainder of $-2x - 7$ is also seen.	M1	1.1b	decomposition.
	$2x^2 - x - 1) \overline{4x^2 - 4x - 9}$			
	$\frac{4x^2-2x-2}{-2x-7}$			
	States $B(x-1) + C(2x+1) \equiv -2x - 7$	M1	2.2a	
	Either equates variables or makes a substitution in an effort to find <i>B</i> or <i>C</i> .	M1	2.2a	
	Finds $B = 4$	A1	1.1b	
	Finds $C = -3$	A1	1.1b	
		(6)		
(b)	Correctly writes $4(2x+1)^{-1}$ or $4(1+2x)^{-1}$ as	M1 ft	2.2a	6th
	$4\left(1+(-1)(2x)+\frac{(-1)(-2)(2)^2x^2}{2}+\right)$			Understand the binomial theorem for rational n.
	Simplifies to obtain $4-8x+16x^2+$	A1 ft	1.1b	
	Correctly writes $\frac{-3}{x-1}$ as $\frac{3}{1-x}$	M1 ft	2.2a	
	Correctly writes $3(1-x)^{-1}$ as	M1 ft	2.2a	
	$3\left(1+(-1)(-x)+\frac{(-1)(-2)(-1)^2(-x)^2}{2}+\right)$			
	Simplifies to obtain $3 + 3x + 3x^2 +$	A1 ft	1.1b	
	States the correct final answer: $9-5x+19x^2$	A1 ft	1.1b	
		(6)		

(c)	The expansion is only valid for $ x < \frac{1}{2}$	B1	3.2b	6th Understand the conditions for validity of the binomial theorem for rational n.
		(1)		
(13 marks)				
Notes				
(a) Alternative method.				
Writes t	he RHS as a single fraction.			
Obtains $4x^2 - 4x - 9 = A(2x+1)(x-1) + B(x-1) + C(2x+1)$				
Substitutes $x = 1$ to obtain $C = -3$				
Substitutes $x = -\frac{1}{2}$ to obtain $B = 4$				
Compares coefficients of x^2 to obtain $A = 2$				
(b) Award all 6 marks for a correct answer using their incorrect values of A, B and/or C from part a .				

16	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
(a)	States $\frac{dh}{dt} = \frac{dV}{dt} \times \frac{dh}{dV}$	M1	3.1b	8th Solve differential equations in a range of contexts.
	Deduces that $V = \pi r^2 h = 1600\pi h$	M1	3.1b	
	Finds $\frac{\mathrm{d}V}{\mathrm{d}h} = 1600\pi \mathrm{and/or} \frac{\mathrm{d}h}{\mathrm{d}V} = \frac{1}{1600\pi}$	M1	1.1b	
	States $\frac{\mathrm{d}V}{\mathrm{d}t} = 4000\pi - 50\pi h$	M1	3.1b	
	Makes an attempt to find $\frac{dh}{dt} = (4000\pi - 50\pi h) \times \frac{1}{1600\pi}$	M1	1.1b	
	Shows a clear logical progression to state $160 \frac{dh}{dt} = 400 - 5h$	A1	1.1b	
		(6)		
(b)	Separates the variables $\int \left(\frac{1}{400-5h}\right) dh = \int \frac{1}{160} dt$	M1	2.2a	8th Solve differential
	Finds $-\frac{1}{5}\ln(400-5h) = \frac{t}{160} + C$	A1	1.1b	equations in a range of contexts.
	Uses the fact that $t = 0$ when $h = 50$ m to find C	M1	1.1b	
	$C = -\frac{1}{5}\ln(150)$			
	Substitutes $h = 60$ into the equation	M1	3.1b	
	$-\frac{1}{5}\ln(400-300) = \frac{t}{160} - \frac{1}{5}\ln(150)$			
	Uses law of logarithms to write	M1	2.2a	
	$\frac{1}{5}\ln(150) - \frac{1}{5}\ln(100) = \frac{t}{160}$			
	$\Rightarrow \frac{1}{5} \ln\left(\frac{150}{100}\right) = \frac{t}{160}$			
	States correct final answer $t = 32 \ln \left(\frac{3}{2}\right)$ minutes.	A1	1.1b	
		(6)		
	·		·	(12 marks)
	Notes			