Questi	on Scheme	Marks	AOs
1	$\frac{1}{2}r^2(4.8)$	M1	1.1a
	$\frac{1}{2}r^2(4.8) = 135 \implies r^2 = \frac{225}{4} \implies r = 7.5$ o.e.	A1	1.1b
	length of minor arc = $7.5(2\pi - 4.8)$	dM1	3.1a
	$= 15\pi - 36 \{a = 15, b = -36\}$	Al	1.1b
		(4)	
1 Alt	$\frac{1}{2}r^2(4.8)$	M1	1.1a
7 Mit	$\frac{1}{2}r^2(4.8) = 135 \implies r^2 = \frac{225}{4} \implies r = 7.5$ o.e.	A1	1.1b
	length of major arc = $7.5(4.8) \{= 36\}$		
	length of minor arc = $2\pi(7.5) - 36$	dM1	3.1a
	$= 15\pi - 36 \{a = 15, b = -36\}$	A1	1.1b
		(4)	
		(4 n	narks)
Questi	on 1 Notes:		
M1:	Applies formula for the area of a sector with $\theta = 4.8$; i.e. $\frac{1}{2}r^2\theta$ with $\theta = 4.8$		
	Note: Allow M1 for considering ratios. E.g. $\frac{135}{\pi r^2} = \frac{4.8}{2\pi}$		
A1:	Uses a correct equation $\left(\text{e.g.} \frac{1}{2}r^2(4.8) = 135\right)$ to obtain a radius of 7.5		
dM1:	Depends on the previous M mark. A complete process for finding the length of the minor arc <i>AB</i> , by either • (their r)×(2 π – 4.8)		

Specimen Paper 9MA0/02: Pure Mathematics Paper 2 Mark scheme

• 2π (their *r*) – (their *r*)(4.8)

A1: Correct exact answer in its simplest form, e.g. $15\pi - 36$ or $-36 + 15\pi$

Questi	on Scheme	Marks	AOs
2 (a)	Attempts to substitute $\cos\theta \approx 1 - \frac{1}{2}\theta^2$ into either $1 + 4\cos\theta$ or $3\cos^2\theta$	M1	1.1b
	$1 + 4\cos\theta + 3\cos^2\theta \approx 1 + 4\left(1 - \frac{1}{2}\theta^2\right) + 3\left(1 - \frac{1}{2}\theta^2\right)^2$		
	$= 1 + 4\left(1 - \frac{1}{2}\theta^{2}\right) + 3\left(1 - \theta^{2} + \frac{1}{4}\theta^{4}\right)$	M1	1.1b
	$= 1 + 4 - 2\theta^2 + 3 - 3\theta^2 + \frac{3}{4}\theta^4$		
	$= 8 - 5\theta^2 *$	A1*	2.1
		(3)	
(b)(i	 E.g. Adele is working in degrees and not radians Adele should substitute θ = 5π/180 and not θ = 5 into the approximation 	B1	2.3
(b)(ii) $8 - 5\left(\frac{5\pi}{180}\right)^2$ = awrt 7.962, so $\theta = 5^\circ$ gives a good approximation.	B1	2.4
		(2)	
		(5 n	narks)
Questi	on 2 Notes:		
(a)(i) M1: M1:	See scheme Substitutes $\cos\theta \approx 1 - \frac{1}{2}\theta^2$ into $1 + 4\cos\theta + 3\cos^2\theta$ and attempts to apply $\left(1 - \frac{1}{2}\theta^2\right)^2$		
	Note: It is not a requirement for this mark to write or refer to the term in θ^4		
A1*:	Correct proof with no errors seen in working.		
	Note: It is not a requirement for this mark to write or refer to the term in θ^4		
(a)(ii) B1: (b)(i)	See scheme		

(b)(ii) Substitutes $\theta = \frac{5\pi}{180}$ or $\frac{\pi}{36}$ into $8 - 5\theta^2$ to give awrt 7.962 *and* an appropriate conclusion. **B1:**

Questi	on Scheme	Marks	AOs		
3 (a)	$\{t = 0, \theta = 75 \Rightarrow 75 = 25 + A \Rightarrow A = 50\} \Rightarrow \theta = 25 + 50e^{-0.03t}$	B1	3.3		
		(1)			
(b)	$\{\theta = 60 \Rightarrow\} \Rightarrow 60 = 25 + "50" e^{-0.03t} \Rightarrow e^{-0.03t} = \frac{60 - 25}{"50"}$	M1	3.4		
	$t = \frac{\ln(0.7)}{-0.03} = 11.8891648 = 11.9$ minutes (1 dp)	A1	1.1b		
		(2)			
(c)	 A valid evaluation of the model, which relates to the large values of t. E.g. As 20.3 < 25 then the model is not true for large values of t e^{-0.03t} = 20.3 - 25/("50") = -0.094 does not have any solutions and so the model predicts that tea in the room will never be 20.3 °C. So the model does not work for large values of t t = 120 ⇒ θ = 25 + 50e^{-0.03(120)} = 26.36 which is not approximately equal to 20.3, so the model is not true for large values of t 	B1	3.5a		
		(1)			
		(4 n	narks)		
Questio	on 3 Notes:				
(a)					
B1:	Applies $t = 0$, $\theta = 75$ to give the complete model $\theta = 25 + 50e^{-0.03t}$				
(b)					
M1:	Applies $\theta = 60$ and their value of A to the model and rearranges to make $e^{-0.03t}$ the subject.				
	Note: Later working can imply this mark.				
A1	Obtains 11.9 (minutes) with no errors in manipulation seen.				
(c)					
B1	See scheme				

Question	Scheme	Marks	AOs
4(a)	y▲ Correct graph in quadrant 1 and quadrant 2 with V on the <i>x</i> -axis	B1	1.1b
	5 5 5 6 7 7 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9	B1	1.1b
		(2)	
(b)	2x-5 > 7		
	$2x-5=7 \implies x=\dots$ and $-(2x-5)=7 \implies x=\dots$	M1	1.1b
	{critical values are $x = 6, -1 \Rightarrow$ } $x < -1$ or $x > 6$	A1	1.1b
(c)	5	(2)	
	$ 2x-5 > x - \frac{5}{2}$ E.g. • Solves $2x - 5 = x - \frac{5}{2}$ to give $x = \frac{5}{2}$ and solves $-(2x - 5) = x - \frac{5}{2}$ to also give $x = \frac{5}{2}$ • Sketches graphs of $y = 2x - 5 $ and $y = x - \frac{5}{2}$. Indicates that these graphs meet at the point $\left(\frac{5}{2}, 0\right)$	M1	3.1a
	Hence using set notation, e.g. • $\left\{x: x < \frac{5}{2}\right\} \cup \left\{x: x > \frac{5}{2}\right\}$ • $\left\{x \in , x \neq \frac{5}{2}\right\}$ • $\left\{x \in , x \neq \frac{5}{2}\right\}$	A1	2.5
		(2)	
	(6 mark		

Quest	ion 4 Notes:
(a)	
B1:	See scheme
B1:	See scheme
(b)	
M1:	See scheme
A1:	Correct answer, e.g.
	• $x < -1$ or $x > 6$
	• $x < -1 \cup x > 6$
	• $\{x: x < -1\} \cup \{x: x > 6\}$
(c)	
M1:	A complete process of finding that $y = 2x - 5 $ and $y = x - \frac{5}{2}$ meet at <i>only</i> one point.
	This can be achieved either algebraically or graphically.
A1:	See scheme.
	Note: Final answer must be expressed using set notation.

Question	Scheme	Marks	AOs
5	$3x - 2y = k$ intersects $y = 2x^2 - 5$ at two distinct points		
	Eliminate <i>y</i> and forms quadratic equation = 0 or quadratic expression $\{=0\}$	M1	3.1a
	$\left\{3x - 2(2x^2 - 5) = k \implies\right\} - 4x^2 + 3x + 10 - k = 0$	A1	1.1b
	$\{"b^2 - 4ac" > 0 \implies \} 3^2 - 4(-4)(10 - k) > 0$	dM1	2.1
	$9 + 16(10 - k) > 0 \implies 169 - 16k > 0$		
	Critical value obtained of $\frac{169}{16}$	B1	1.1b
	$k < \frac{169}{16} \text{o.e.}$	A1	1.1b
		(5)	
5	Eliminate y and forms quadratic equation = 0 or quadratic expression $\{=0\}$	M1	3.1a
Alt 1	$y = 2\left(\frac{1}{3}(k+2y)\right)^2 - 5 \implies y = \frac{2}{9}(k^2 + 4ky + 4y^2) - 5$		
	$8y^2 + (8k-9)y + 2k^2 - 45 = 0$	A1	1.1b
	$\left\{ "b^2 - 4ac" > 0 \implies \right\} (8k - 9)^2 - 4(8)(2k^2 - 45) > 0$	dM1	2.1
	$64k^2 - 144k + 81 - 64k^2 + 1440 > 0 \implies -144k + 1521 > 0$		
	Critical value obtained of $\frac{169}{16}$	B1	1.1b
	$k < \frac{169}{16}$ o.e.	A1	1.1b
		(5)	
5	$\frac{dy}{dx} = 4x, \ m_l = \frac{3}{2} \implies 4x = \frac{3}{2} \implies x = \frac{3}{8} \ . \ \text{So} \ y = 2\left(\frac{3}{8}\right)^2 - 5 = -\frac{151}{32}$	M1	3.1a
Alt 2	$\frac{dx}{dx} = \frac{dx}{2} = \frac{dx}{2} = \frac{dx}{2} = \frac{dx}{8} = \frac{dx}{2} = \frac{dx}{8} = \frac{dx}{32} $	A1	1.1b
	$k = 3\left(\frac{3}{8}\right) - 2\left(-\frac{151}{32}\right) \Longrightarrow k = \dots$	dM1	2.1
	Critical value obtained of $\frac{169}{16}$	B1	1.1b
	$k < \frac{169}{16} \text{o.e.}$	A1	1.1b
		(5)	
		(5 n	narks)

Questic	on 5 Notes:
M1:	Complete strategy of eliminating x or y and manipulating the resulting equation to form a quadratic equation = 0 or a quadratic expression $\{=0\}$
A1:	Correct algebra leading to either
	• $-4x^2 + 3x + 10 - k = 0$ or $4x^2 - 3x - 10 + k = 0$
	or a one-sided quadratic of either $-4x^2 + 3x + 10 - k$ or $4x^2 - 3x - 10 + k$
	• $8y^2 + (8k-9)y + 2k^2 - 45 = 0$
	or a one-sided quadratic of e.g. $8y^2 + (8k-9)y + 2k^2 - 45$
dM1:	Depends on the previous M mark.
	Interprets $3x - 2y = k$ intersecting $y = 2x^2 - 5$ at two distinct points by applying
	$b^{2} - 4ac'' > 0$ to their quadratic equation or one-sided quadratic.
B1:	See scheme
A1:	Correct answer, e.g.
	• $k < \frac{169}{16}$
	• $\left\{k:k < \frac{169}{16}\right\}$
Alt 2	
M1:	Complete strategy of using differentiation to find the values of x and y where $3x - 2y = k$ is a
	tangent to $y = 2x^2 - 5$
A1:	Correct algebra leading to $x = \frac{3}{8}, y = -\frac{151}{32}$
dM1:	Depends on the previous M mark.
	Full method of substituting their $x = \frac{3}{8}$, $y = -\frac{151}{32}$ into <i>l</i> and attempting to find the value for <i>k</i> .
B1:	See scheme
A1:	Deduces correct answer, e.g.
	• $k < \frac{169}{16}$
	• $\left\{k:k < \frac{169}{16}\right\}$

Question	Scheme	Marks	AOs
6(a)	$f(x) = (8-x)\ln x, \ x > 0$		
	Crosses x-axis $\Rightarrow f(x) = 0 \Rightarrow (8 - x)\ln x = 0$		
	<i>x</i> coordinates are 1 and 8	B1	1.1b
		(1)	
(b)	Complete strategy of setting $f'(x) = 0$ and rearranges to make $x =$	M1	3.1a
	$\begin{cases} u = (8 - x) v = \ln x \\ \frac{\mathrm{d}u}{\mathrm{d}x} = -1 \qquad \frac{\mathrm{d}v}{\mathrm{d}x} = \frac{1}{x} \end{cases}$		
	$f'(x) = -\ln x + \frac{8-x}{x}$	M1	1.1b
	$1(x) = -\ln x + \frac{1}{x}$	A1	1.1b
	$-\ln x + \frac{8-x}{x} = 0 \implies -\ln x + \frac{8}{x} - 1 = 0$ $\implies \frac{8}{x} = 1 + \ln x \implies x = \frac{8}{1 + \ln x} *$	A1*	2.1
		(4)	
(c)	Evaluates both $f'(3.5)$ and $f'(3.6)$	M1	1.1b
	f'(3.5) = 0.032951317 and $f'(3.6) = -0.058711623Sign change and as f'(x) is continuous, the x coordinate of Q lies between x = 3.5 and x = 3.6$	A1	2.4
		(2)	
(d)(i)	${x_5 =} 3.5340$	B1	1.1b
(d)(ii)	${x_Q} = 3.54 \ (2 \text{ dp})$	B1	2.2a
		(2)	
	(9 marks)		

Quest	ion 6 Notes:
(a)	
B1:	Either
	• 1 and 8
	• on Figure 2, marks 1 next to A and 8 next to B
(b)	
M1:	Recognises that Q is a stationary point (and not a root) and applies a complete strategy of setting $f'(x) = 0$ and rearranges to make $x =$
M1:	Applies $vu' + uv'$, where $u = 8 - x$, $v = \ln x$
	Note: This mark can be recovered for work in part (c)
A1:	$(8-x)\ln x \rightarrow -\ln x + \frac{8-x}{x}$, or equivalent
	Note: This mark can be recovered for work in part (c)
A1*:	Correct proof with no errors seen in working.
(c)	
M1:	Evaluates both $f'(3.5)$ and $f'(3.6)$
A1:	$f'(3.5) = awrt \ 0.03 \ and \ f'(3.6) = awrt - 0.06 \ or \ f'(3.6) = -0.05 \ (truncated)$
	and a correct conclusion
(d)(i)	
B1:	See scheme
(d)(ii)	
B1:	Deduces (e.g. by the use of further iterations) that the x coordinate of Q is 3.54 accurate to 2 dp
	Note: $3.5 \rightarrow 3.55119 \rightarrow 3.52845 \rightarrow 3.53848 \rightarrow 3.53404 \rightarrow 3.53600 \rightarrow 3.53514 (\rightarrow 3.535518)$

Question	Scheme	Marks	AOs
7(a)	$\frac{\mathrm{d}p}{\mathrm{d}t} \propto p \implies \frac{\mathrm{d}p}{\mathrm{d}t} = kp$	B1	3.3
	$\int \frac{1}{p} dp = \int k dt$	M1	1.1b
	$\ln p = kt \{+c\}$	A1	1.1b
	$\ln p = kt + c \implies p = e^{kt + c} = e^{kt}e^c \implies p = ae^{kt} *$	A1 *	2.1
		(4)	
(b)	$p = ae^{kt} \implies \ln p = \ln a + kt \text{ and evidence of understanding that either}$ • gradient = k or "M" = k • vertical intercept = ln a or "C" = ln a	M1	2.1
	gradient = $k = 0.14$	A1	1.1b
	vertical intercept = $\ln a = 3.95 \implies a = e^{3.95} = 51.935 = 52 (2 \text{ sf})$	A1	1.1b
		(3)	
(c)	e.g. • $p = ae^{kt} \Rightarrow p = a(e^k)^t = ab^t$, • $p = 52e^{0.14t} \Rightarrow p = 52(e^{0.14})^t$	B1	2.2a
	$b = 1.15$ which can be implied by $p = 52(1.15)^t$	B1	1.1b
		(2)	
(d)(i)	Initial area (i.e. $"52" \text{ mm}^2$) of bacterial culture that was first placed onto the circular dish.	B1	3.4
(d)(ii)	 E.g. Rate of increase per hour of the area of bacterial culture The area of bacterial culture increases by "15%" each hour 	B1	3.4
		(2)	
(e)	The model predicts that the area of the bacteria culture will increase indefinitely, but the size of the circular dish will be a constraint on this area.	B1	3.5b
		(1)	
	(12 marl		

Quest	Question 7 Notes:		
(a)			
B1:	Translates the scientist's statement regarding proportionality into a differential equation, which		
	involves a constant of proportionality. e.g. $\frac{dp}{dt} \propto p \implies \frac{dp}{dt} = kp$		
M1:	Correct method of separating the variables p and t in their differential equation		
A1:	$\ln p = kt$, with or without a constant of integration		
A1*:	Correct proof with no errors seen in working.		
(b)			
M1:	See scheme		
A1:	Correctly finds $k = 0.14$		
A1:	Correctly finds $a = 52$		
(c)			
B1:	Uses algebra to correctly deduce either		
	• $p = ab^t$ from $p = ae^{kt}$		
	• $p = "52"(e^{"0.14"})^t$ from $p = "52"e^{"0.14"t}$		
B1:	See scheme		
(d)(i)			
B1:	See scheme		
(d)(ii)			
B1:	See scheme		
(e)			
B1:	Gives a correct long-term limitation of the model for <i>p</i> . (See scheme).		

Quest	on Scheme	Marks	AOs
8(a)	$\frac{\mathrm{d}V}{\mathrm{d}t} = 160\pi, \ V = \frac{1}{3}\pi h^2 (75 - h) = 25\pi h^2 - \frac{1}{3}\pi h^3$		
	$\frac{\mathrm{d}V}{\mathrm{d}L} = 50\pi h - \pi h^2$	M1	1.1b
	$\frac{1}{dh} = 36\pi h - \pi h$	A1	1.1b
	$\left\{\frac{\mathrm{d}V}{\mathrm{d}h} \times \frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}t} \Longrightarrow\right\} \left(50\pi h - \pi h^2\right) \frac{\mathrm{d}h}{\mathrm{d}t} = 160\pi$	M1	3.1a
	When $h = 10$, $\left\{\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}t} \div \frac{\mathrm{d}V}{\mathrm{d}h} \Rightarrow\right\} \frac{160\pi}{50\pi(10) - \pi(10)^2} \left\{=\frac{160\pi}{400\pi}\right\}$	dM1	3.4
	$\frac{\mathrm{d}h}{\mathrm{d}t} = 0.4 \ (\mathrm{cms^{-1}})$	A1	1.1b
		(5)	
(b)	$\frac{dh}{dt} = \frac{300\pi}{50\pi(20) - \pi(20)^2}$	M1	3.4
	$\frac{\mathrm{d}h}{\mathrm{d}t} = 0.5 \ (\mathrm{cms^{-1}})$	A1	1.1b
		(2)	
		(7 n	narks)
Questi	on 8 Notes:		
(a)			
M1:	Differentiates V with respect to h to give $\pm \alpha h \pm \beta h^2$, $\alpha \neq 0$, $\beta \neq 0$		
A1:	$50\pi h - \pi h^2$		
M1:	Attempts to solve the problem by applying a complete method of $\left(\text{their } \frac{\mathrm{d}V}{\mathrm{d}h}\right) \times \frac{\mathrm{d}h}{\mathrm{d}t}$	$=160\pi$	
M1:	Depends on the previous M mark.		
	Substitutes $h = 10$ into their model for $\frac{dh}{dt}$ which is in the form $\frac{160\pi}{\left(\text{their }\frac{dV}{dh}\right)}$		
A1:	Obtains the correct answer 0.4		
(b)			
M1:	Realises that rate for of 160π cm ³ s ⁻¹ for $0 \tilde{N} h \tilde{N} 12$ has no effect when the rate is increased to		
	300π cm ³ s ⁻¹ for $12 < h$ Ñ 24 and so substitutes $h = 20$ into their model for $\frac{dh}{dt}$	which is in t	he
	form $\frac{300\pi}{\left(\text{their }\frac{\mathrm{d}V}{\mathrm{d}h}\right)}$		
A1:	Obtains the correct answer 0.5		

Question	Scheme	Marks	AOs
9(a)	E.g. midpoint $PQ = \left(\frac{-9+15}{2}, \frac{8-10}{2}\right)$	M1	1.1b
	= $(3, -1)$, which is the centre point <i>A</i> , so <i>PQ</i> is the diameter of the circle.	A1	2.1
		(2)	
(a) Alt 1	$m_{PQ} = \frac{-10-8}{159} = -\frac{3}{4} \Rightarrow PQ: y-8 = -\frac{3}{4}(x9)$	M1	1.1b
	$PQ: y = -\frac{3}{4}x + \frac{5}{4}.$ So $x = 3 \Rightarrow y = -\frac{3}{4}(3) + \frac{5}{4} = -1$ so PQ is the diameter of the circle.	A1	2.1
	~	(2)	
(a) Alt 2	$PQ = \sqrt{(-9-15)^2 + (8-10)^2} \left\{ = \sqrt{900} = 30 \right\}$ and either		
	• $AP = \sqrt{(39)^2 + (-1 - 8)^2} \left\{ = \sqrt{225} = 15 \right\}$	M1	1.1b
	• $AQ = \sqrt{(3-15)^2 + (-1-10)^2} \left\{ = \sqrt{225} = 15 \right\}$		
	e.g. as $PQ = 2AP$, then PQ is the diameter of the circle.	A1	2.1
		(2)	
(b)	Uses Pythagoras in a correct method to find either the radius or diameter of the circle.	M1	1.1b
	$(x-3)^{2} + (y+1)^{2} = 225 \text{ (or } (15)^{2})$	M1	1.1b
		A1	1.1b
(c)	1	(3)	
(c)	Distance $= \sqrt{("15")^2 - (10)^2}$ or $= \frac{1}{2}\sqrt{(2("15"))^2 - (2(10))^2}$	M1	3.1a
	$\left\{=\sqrt{125}\right\} = 5\sqrt{5}$	Al	1.1b
		(2)	
(d)	$\sin(A\hat{R}Q) = \frac{20}{2("15")}$ or $A\hat{R}Q = 90 - \cos^{-1}\left(\frac{10}{"15"}\right)$	M1	3.1a
	$A\hat{R}Q = 41.8103 = 41.8^{\circ}$ (to 0.1 of a degree)	A1	1.1b
		(2)	
		(9 marks)	

Quest	ion 9 Notes:
(a)	
M1:	Uses a correct method to find the midpoint of the line segment PQ
A1:	Completes proof by obtaining $(3, -1)$ and gives a correct conclusion.
(a)	
Alt 1	
M1:	Full attempt to find the equation of the line PQ
A1:	Completes proof by showing that $(3, -1)$ lies on PQ and gives a correct conclusion.
(a)	
Alt 2	
M1:	Attempts to find distance PQ and either one of distance AP or distance AQ
A1:	Correctly shows either • $PQ = 2AP$, supported by $PQ = 30$, $AP = 15$ and gives a correct conclusion
	• $PQ = 2AQ$, supported by $PQ = 30$, $AQ = 15$ and gives a correct conclusion • $PQ = 2AQ$, supported by $PQ = 30$, $AQ = 15$ and gives a correct conclusion
(h)	$f = 1 \mathcal{G} = 2M \mathcal{G}$, supported by $T \mathcal{G} = 50$, $M \mathcal{G} = 15$ and gives a confect conclusion
(b) M1:	Either
1,111.	• uses Pythagoras correctly in order to find the radius . Must clearly be identified as the
	radius. E.g. $r^2 = (-9-3)^2 + (8+1)^2$ or $r = \sqrt{(-9-3)^2 + (8+1)^2}$ or
	$r^{2} = (15-3)^{2} + (-10+1)^{2} \text{ or } r = \sqrt{(15-3)^{2} + (-10+1)^{2}}$
	 or uses Pythagoras correctly in order to find the diameter. Must clearly be identified as the
	diameter. E.g. $d^2 = (15+9)^2 + (-10-8)^2$ or $d = \sqrt{(15+9)^2 + (-10-8)^2}$
	Note: This mark can be implied by just 30 clearly seen as the diameter or 15 clearly seen as the
	radius (may be seen or implied by fact so clearly seen as the diameter of 15 clearly seen as the
M1:	Writes down a circle equation in the form $(x \pm "3")^2 + (y \pm "-1")^2 = (\text{their } r)^2$
A1:	$(x-3)^{2} + (y+1)^{2} = 225$ or $(x-3)^{2} + (y+1)^{2} = 15^{2}$ or $x^{2} - 6x + y^{2} + 2y - 215 = 0$
(c)	
M1:	Attempts to solve the problem by using the circle property "the perpendicular from the centre to a
	chord bisects the chord" and so applies Pythagoras to write down an expression of the form
	$\sqrt{(\text{their "15"})^2 - (10)^2}$.
A1:	$5\sqrt{5}$ by correct solution only
(d)	
M1:	Attempts to solve the problem by e.g. using the circle property "the angle in a semi-circle is a right
	angle" and writes down either $\sin(A\hat{R}Q) = \frac{20}{2(\text{their "15"})}$ or $A\hat{R}Q = 90 - \cos^{-1}\left(\frac{10}{\text{their "15"}}\right)$
	Note: Also allow $\cos(A\hat{R}Q) = \frac{15^2 + (2(5\sqrt{5}))^2 - 15^2}{2(15)(2(5\sqrt{5}))} \left\{ = \frac{\sqrt{5}}{3} \right\}$
A1:	41.8 by correct solution only

Question	Scheme	Marks	AOs
10 (a)	$x > \ln\left(\frac{4}{3}\right)$	B1	2.2a
		(1)	
(b)	Attempts to apply $\int y \frac{\mathrm{d}x}{\mathrm{d}t} \mathrm{d}t$	M1	3.1a
	$\left\{\int y \frac{\mathrm{d}x}{\mathrm{d}t} \mathrm{d}t = \right\} = \int \left(\frac{1}{t+1}\right) \left(\frac{1}{t+2}\right) \mathrm{d}t$	A1	1.1b
	$\frac{1}{(t+1)(t+2)} \equiv \frac{A}{(t+1)} + \frac{B}{(t+2)} \Rightarrow 1 \equiv A(t+2) + B(t+1)$ $\left\{A = 1, B = -1 \Rightarrow \right\} \text{ gives } \frac{1}{(t+1)} - \frac{1}{(t+2)}$	M1	3.1a
	$\{A=1, B=-1 \Rightarrow\}$ gives $\frac{1}{(t+1)} - \frac{1}{(t+2)}$	A1	1.1b
	$\left\{ \int \left(\frac{1}{(t+1)} - \frac{1}{(t+2)} \right) dt = \right\} \ln(t+1) - \ln(t+2)$	M1	1.1b
	$\left(\int \left((t+1) (t+2) \right)^{dt} \right)^{dt} = \int \left(\inf_{t \in T} \left((t+1) \inf_{t \in T} \left((t+2) \right)^{dt} \right)^{dt} \right)^{dt}$	A1	1.1b
	Area(R) = $\left[\ln(t+1) - \ln(t+2)\right]_0^2 = (\ln 3 - \ln 4) - (\ln 1 - \ln 2)$	M1	2.2a
	$= \ln 3 - \ln 4 + \ln 2 = \ln \left(\frac{(3)(2)}{4}\right) = \ln \left(\frac{6}{4}\right)$		
	$= \ln\left(\frac{3}{2}\right) *$	A1*	2.1
		(8)	
(b) Alt 1	Attempts to apply $\int y dx = \int \frac{1}{e^x - 2 + 1} dx = \int \frac{1}{e^x - 1} dx$,	M1	3.1a
	with a substitution of $u = e^x - 1$		
	$\left\{\int y dx\right\} = \int \left(\frac{1}{u}\right) \left(\frac{1}{u+1}\right) du$	A1	1.1b
	$\frac{1}{u(u+1)} \equiv \frac{A}{u} + \frac{B}{(u+1)} \implies 1 \equiv A(u+1) + Bu$	M1	3.1a
	$\{A=1, B=-1 \Rightarrow\}$ gives $\frac{1}{u}-\frac{1}{(u+1)}$	A1	1.1b
	$\left\{ \int \left(\frac{1}{u} - \frac{1}{(u+1)}\right) du = \right\} \ln u - \ln(u+1)$	M1	1.1b
		Al	1.1b
	Area(R) = $\left[\ln u - \ln(u+1)\right]_{1}^{3} = (\ln 3 - \ln 4) - (\ln 1 - \ln 2)$	M1	2.2a
	$= \ln 3 - \ln 4 + \ln 2 = \ln \left(\frac{(3)(2)}{4}\right) = \ln \left(\frac{6}{4}\right)$		
	$=\ln\left(\frac{3}{2}\right)*$	A1 *	2.1
		(8)	
			narks)

Question	Scheme	Marks	AOs
10 (b) Alt 2	Attempts to apply $\int y dx = \int \frac{1}{e^x - 2 + 1} dx = \int \frac{1}{e^x - 1} dx$, with a substitution of $v = e^x$	M1	3.1a
	with a substitution of $V = e$		
	$\left\{\int y dx\right\} = \int \left(\frac{1}{\nu - 1}\right) \left(\frac{1}{\nu}\right) d\nu$	A1	1.1b
	$\frac{1}{(v-1)v} \equiv \frac{A}{(v-1)} + \frac{B}{v} \implies 1 \equiv Av + B(v-1)$	M1	3.1a
	$\{A=1, B=-1 \Rightarrow\}$ gives $\frac{1}{(v-1)}-\frac{1}{v}$	A1	1.1b
	$\left\{ \int \left(\frac{1}{(v-1)} - \frac{1}{v}\right) dv = \right\} \ln(v-1) - \ln v$	M1	1.1b
	$\left\{ \int \left(\frac{1}{(v-1)} - \frac{1}{v} \right) dv = \right\} \operatorname{Im}(v-1) - \operatorname{Im} v$	A1	1.1b
	Area(R) = $\left[\ln(v-1) - \ln v\right]_{2}^{4} = (\ln 3 - \ln 4) - (\ln 1 - \ln 2)$	M1	2.2a
	$= \ln 3 - \ln 4 + \ln 2 = \ln \left(\frac{(3)(2)}{4} \right) = \ln \left(\frac{6}{4} \right)$		
	$=\ln\left(\frac{3}{2}\right)$ *	A1 *	2.1
		(8)	

Quest	estion 10 Notes:		
(a)			
B1:	Uses $x = \ln(t+2)$ with $t > -\frac{2}{3}$ to deduce the correct domain, $x > \ln\left(\frac{4}{3}\right)$		
(b)			
M1:	Attempts to solve the problem by either		
	• a parametric process or		
	• a Cartesian process with a substitution of either $u = e^x - 1$ or $v = e^x$		
A1:	Obtains		
	• $\int \left(\frac{1}{t+1}\right) \left(\frac{1}{t+2}\right) dt$ from a parametric approach		
	• $\int \left(\frac{1}{u}\right) \left(\frac{1}{u+1}\right) du$ from a Cartesian approach with $u = e^x - 1$		
	• $\int \left(\frac{1}{v-1}\right) \left(\frac{1}{v}\right) dv$ from a Cartesian approach with $v = e^x$		
M1:	Applies a strategy of attempting to express either $\frac{1}{(t+1)(t+2)}$, $\frac{1}{u(u+1)}$ or $\frac{1}{(v-1)v}$		
	as partial fractions		
A1:	Correct partial fractions for their method		
M1:	Integrates to give either		
	• $\pm \alpha \ln(t+1) \pm \beta \ln(t+2)$		
	• $\pm \alpha \ln u \pm \beta \ln(u+1); \alpha, \beta \neq 0$, where $u = e^x - 1$		
	• $\pm \alpha \ln(v-1) \pm \beta \ln v$; $\alpha, \beta \neq 0$, where $v = e^x$		
A1:	Correct integration for their method		
M1:	Either		
	• Parametric approach: Deduces and applies limits of 2 and 0 in <i>t</i> and subtracts the correct way round		
	• Cartesian approach: Deduces and applies limits of 3 and 1 in u , where $u = e^x - 1$,		
	and subtracts the correct way round		
	• Cartesian approach: Deduces and applies limits of 4 and 2 in v, where $v = e^x$,		
	and subtracts the correct way round		
A1*:	Correctly shows that the area of <i>R</i> is $\ln\left(\frac{3}{2}\right)$, with no errors seen in their working		

Quest	tion	Scheme	Marks	AOs
11		Arithmetic sequence, $T_2 = 2k$, $T_3 = 5k - 10$, $T_4 = 7k - 14$		
		$(5k-10) - (2k) = (7k-14) - (5k-10) \implies k = \dots$	M1	2.1
		$\{3k - 10 = 2k - 4 \Longrightarrow\} k = 6$	A1	1.1b
		$\{k = 6 \Rightarrow\}$ $T_2 = 12, T_3 = 20, T_4 = 28.$ So $d = 8, a = 4$	M1	2.2a
		$S_n = \frac{n}{2} \left(2(4) + (n-1)(8) \right)$	M1	1.1b
		$=\frac{n}{2}(8+8n-8) = 4n^2 = (2n)^2$ which is a square number	A1	2.1
			(5)	
			(5 n	narks)
Quest	ion 1	1 Notes:		
M1:	Con	nplete method to find the value of k		
A1:	Use	s a correct method to find $k = 6$		
M1:	Uses their value of k to deduce the common difference and the first term $(\neq T_2)$ of the arithmetic series.		netic	
M1:	App	blies $S_n = \frac{n}{2} (2a + (n-1)d)$ with their $a \neq T_2$ and their d .		
A1:	Correctly shows that the sum of the series is $(2n)^2$ and makes an appropriate conclusion.			

Quest	ion Scheme	Marks	AOs
12	Complete process to find at least one set of coordinates for <i>P</i> . The process must include evidence of • differentiating • setting $\frac{dy}{dx} = 0$ to find $x =$ • substituting $x =$ into $\sin x + \cos y = 0.5$ to find $y =$	M1	3.1a
	$\left\{ \underbrace{\underbrace{A}}_{A} \times \right\} \cos x - \sin y \frac{\mathrm{d}y}{\mathrm{d}x} = 0$	B1	1.1b
	Applies $\frac{dy}{dx} = 0$ (e.g. $\cos x = 0$ or $\frac{\cos x}{\sin y} = 0 \Rightarrow \cos x = 0$) $\Rightarrow x =$	M1	2.2a
	giving at least one of either $x = -\frac{\pi}{2}$ or $x = \frac{\pi}{2}$	A1	1.1b
	$x = \frac{\pi}{2} \Rightarrow \sin\left(\frac{\pi}{2}\right) + \cos y = 0.5 \Rightarrow \cos y = -\frac{1}{2} \Rightarrow y = \frac{2\pi}{3} \text{ or } -\frac{2\pi}{3}$	M1	1.1b
	So in specified range, $(x, y) = \left(\frac{\pi}{2}, \frac{2\pi}{3}\right)$ and $\left(\frac{\pi}{2}, -\frac{2\pi}{3}\right)$, by cso	A1	1.1b
	$x = -\frac{\pi}{2} \implies \sin\left(-\frac{\pi}{2}\right) + \cos y = 0.5 \implies \cos y = 1.5 \text{ has no solutions,}$ and so there are exactly 2 possible points <i>P</i> .	B1	2.1
		(7)	
		(7 n	narks)
Questi	on 12 Notes:		
M1:	See scheme		
B1:	Correct differentiated equation. E.g. $\cos x - \sin y \frac{dy}{dx} = 0$		

M1: Uses the information "the tangent to *C* at the point *P* is parallel to the *x*-axis" to deduce and apply $\frac{dy}{dx} = 0$ and finds x = ...

A1: See scheme

M1: For substituting one of their values from $\frac{dy}{dx} = 0$ into $\sin x + \cos y = 0.5$ and so finds x = ..., y = ...

A1: Selects coordinates for P on C satisfying $\frac{dy}{dx} = 0$ and $-\frac{\pi}{2}\tilde{N}x < \frac{3\pi}{2}$, $-\pi < y < \pi$

- i.e. finds $\left(\frac{\pi}{2}, \frac{2\pi}{3}\right)$ and $\left(\frac{\pi}{2}, -\frac{2\pi}{3}\right)$ and no other points by correct solution only
- **B1:** Complete argument to show that there are exactly 2 possible points *P*.

Question	Scheme	Marks	AOs
13(a)	$\csc 2x + \cot 2x \equiv \cot x, \ x \neq 90n^{\circ}, \ n \in \mathbb{Z}$		
	$\csc 2x + \cot 2x = \frac{1}{\sin 2x} + \frac{\cos 2x}{\sin 2x}$	M1	1.2
	$=\frac{1+\cos 2x}{\sin 2x}$	M1	1.1b
	$= \frac{1 + 2\cos^2 x - 1}{2\cos^2 x} = \frac{2\cos^2 x}{1 + 2\cos^2 x}$	M1	2.1
	$\frac{-2\sin x\cos x}{2\sin x\cos x} = \frac{-2\sin x\cos x}{2\sin x\cos x}$	A1	1.1b
	$= \frac{\cos x}{\sin x} = \cot x *$	A1*	2.1
		(5)	
(b)	$\csc(4\theta + 10^\circ) + \cot(4\theta + 10^\circ) = \sqrt{3}; \ 0 \tilde{N} \theta < 180^\circ,$		
	$\cot(2\theta \pm^{\circ}) = \sqrt{3}$	M1	2.2a
	$2\theta \pm = 30^\circ \Rightarrow \theta = 12.5^\circ$	M1	1.1b
	20 ± 50 → 0 - 12.5	A1	1.1b
	$2\theta + 5^\circ = 180^\circ + PV^\circ \implies \theta =^\circ$	M1	2.1
	$\theta = 102.5^{\circ}$	A1	1.1b
		(5)	
	(10 marks		narks)

Quest	estion 13 Notes:	
(a)		
M1:	Writes $\csc 2x = \frac{1}{\sin 2x}$ and $\cot 2x = \frac{\cos 2x}{\sin 2x}$	
M1:	Combines into a single fraction with a common denominator	
M1:	Applies $\sin 2x = 2\sin x \cos x$ to the denominator and applies either	
	$\bullet \cos 2x = 2\cos^2 x - 1$	
	• $\cos 2x = 1 - 2\sin^2 x$ and $\sin^2 x + \cos^2 x = 1$	
	• $\cos 2x = \cos^2 x - \sin^2 x$ and $\sin^2 x + \cos^2 x = 1$	
	to the numerator and manipulates to give a one term numerator expression	
A1:	Correct algebra leading to $\frac{2\cos^2 x}{2\sin x \cos x}$ or equivalent.	
A1*:	Correct proof with correct notation and no errors seen in working	
(b)		
M1:	Uses the result in part (a) in an attempt to deduce either $2x = 4\theta + 10$ or $x = 2\theta +$ and uses	
	$x = 2\theta +$ to write down or imply $\cot(2\theta \pm^{\circ}) = \sqrt{3}$	
M1:	Applies $\operatorname{arccot}(\sqrt{3}) = 30^{\circ} \text{ or } \operatorname{arctan}\left(\frac{1}{\sqrt{3}}\right) = 30^{\circ}$	
	and attempts to solve $2\theta \pm = 30^{\circ}$ to give $\theta =$	
A1:	Uses a correct method to obtain $\theta = 12.5^{\circ}$	
M1:	Uses $2\theta + 5 = 180$ + their PV° in a complete method to find the second solution, $\theta =$	
A1:	Uses a correct method to obtain $\theta = 102.5^{\circ}$, with no extra solutions given either inside or outside the required range $0 \tilde{N} \theta < 180^{\circ}$	

Question	Scheme	Marks	AOs
14 (i)	For an explanation or statement to show when the claim 3^x $\ddot{O} 2^x$ fails This could be e.g. • when $x = -1$, $\frac{1}{3} < \frac{1}{2}$ or $\frac{1}{3}$ is not greater than or equal to $\frac{1}{2}$ • when $x < 0$, $3^x < 2^x$ or 3^x is not greater than or equal to 2^x	M1	2.3
	 followed by an explanation or statement to show when the claim 3^x Ö 2^x is true. This could be e.g. x = 2, 9 Ö 4 or 9 is greater than or equal to 4 when x Ö 0, 3^x Ö 2^x and a correct conclusion. E.g. so the claim 3^x Ö 2^x is sometimes true 	A1	2.4
		(2)	
(ii)	Assume that $\sqrt{3}$ is a rational number So $\sqrt{3} = \frac{p}{q}$, where p and q integers, $q \neq 0$, and the HCF of p and q is 1	M1	2.1
	$\Rightarrow p = \sqrt{3} q \Rightarrow p^2 = 3q^2$	M1	1.1b
	$\Rightarrow p^2$ is divisible by 3 and so p is divisible by 3	A1	2.2a
	So $p = 3c$, where c is an integer From earlier, $p^2 = 3q^2 \implies (3c)^2 = 3q^2$	M1	2.1
	$\Rightarrow q^2 = 3c^2 \Rightarrow q^2$ is divisible by 3 and so q is divisible by 3	A1	1.1b
	As both p and q are both divisible by 3 then the HCF of p and q is not 1 This contradiction implies that $\sqrt{3}$ is an irrational number	A1	2.4
		(6)	
	(8 mark		narks)

Quest	ion 14 Notes:
(i)	
M1:	See scheme
A1:	See scheme
(ii)	
M1:	Uses a method of proof by contradiction by initially assuming that $\sqrt{3}$ is rational and expresses
	$\sqrt{3}$ in the form $\frac{p}{q}$, where p and q are correctly defined.
M1:	Writes $\sqrt{3} = \frac{p}{q}$ and rearranges to make p^2 the subject
A1:	Uses a logical argument to prove that p is divisible by 3
M1:	Uses the result that p is divisible by 3, (to construct the initial stage of proving that q is also
	divisible by 3), by substituting $p = 3c$ into their expression for p^2
A1:	Hence uses a correct argument, in the same way as before, to deduce that q is also divisible by 3
A1:	Completes the argument (as detailed on the scheme) that $\sqrt{3}$ is irrational.
	Note: All the previous 5 marks need to be scored in order to obtain the final A mark.