Specimen Paper 9MA0/01: Pure Mathematics Paper 1 Mark scheme | Question | Scheme | Marks | AOs | |----------|---|-----------|------| | 1 (a) | $Area(R) \sim \frac{1}{2} \times 0.5 \times \left[0.5 \pm 2(0.6742 \pm 0.8284 \pm 0.0686) \pm 1.0081\right]$ | B1 | 1.1b | | | Area(R) $\approx \frac{1}{2} \times 0.5 \times \left[\frac{0.5 + 2(0.6742 + 0.8284 + 0.9686) + 1.0981}{0.5 + 0.8284 + 0.9686) + 1.0981} \right]$ | <u>M1</u> | 1.1b | | | $\left\{ = \frac{1}{4} \times 6.5405 = 1.635125 \right\} = 1.635(3 \text{ dp})$ | A1 | 1.1b | | | | (3) | | | (b) | Any valid reason, for example Increase the number of strips Decrease the width of the strips Use more trapezia between x = 1 and x = 3 | B1 | 2.4 | | | | (1) | | | (c)(i) | $\left\{ \int_{1}^{3} \frac{5x}{1+\sqrt{x}} \mathrm{d}x \right\} = 5("1.635") = 8.175$ | B1ft | 2.2a | | (c)(ii) | $\left\{ \int_{1}^{3} \left(6 + \frac{x}{1 + \sqrt{x}} \right) dx \right\} = 6(2) + ("1.635") = 13.635$ | B1ft | 2.2a | | | | (2) | | (6 marks) # **Question 1 Notes:** | Question | Scheme | Marks | AOs | |----------|---|-------|--------| | 2 (a) | $(4+5x)^{\frac{1}{2}} = \left(4\right)^{\frac{1}{2}} \left(1 + \frac{5x}{4}\right)^{\frac{1}{2}} = 2\left(1 + \frac{5x}{4}\right)^{\frac{1}{2}}$ | B1 | 1.1b | | | $= \{2\} \left[1 + \left(\frac{1}{2}\right) \left(\frac{5x}{4}\right) + \frac{\left(\frac{1}{2}\right) \left(-\frac{1}{2}\right)}{2!} \left(\frac{5x}{4}\right)^2 + \dots \right]$ | M1 | 1.1b | | | | A1ft | 1.1b | | | $=2+\frac{5}{4}x-\frac{25}{64}x^2+$ | A1 | 2.1 | | | | (4) | | | (b)(i) | $\left\{x = \frac{1}{10} \Longrightarrow \right\} \left(4 + 5(0.1)\right)^{\frac{1}{2}}$ | M1 | 1.1b | | | $=\sqrt{4.5} = \frac{3}{2}\sqrt{2} \text{ or } \frac{3}{\sqrt{2}}$ | | | | | $\frac{3}{2}\sqrt{2} \text{ or } 1.5\sqrt{2} \text{ or } \frac{3}{\sqrt{2}} = 2 + \frac{5}{4}\left(\frac{1}{10}\right) - \frac{25}{64}\left(\frac{1}{10}\right)^2 + \dots \ \{=2.121\}$ $\Rightarrow \frac{3}{2}\sqrt{2} = \frac{543}{256} \text{ or } \frac{3}{\sqrt{2}} = \frac{543}{256} \ \Rightarrow \sqrt{2} = \dots$ | M1 | 3.1a | | | So, $\sqrt{2} = \frac{181}{128}$ or $\sqrt{2} = \frac{256}{181}$ | A1 | 1.1b | | (b)(ii) | $x = \frac{1}{10}$ satisfies $ x < \frac{4}{5}$ (o.e.), so the approximation is valid. | B1 | 2.3 | | | | (4) | | | | | (8 n | narks) | # **Question 2 Notes:** (a) **B1:** Manipulates $(4 + 5x)^{\frac{1}{2}}$ by taking out a factor of $(4)^{\frac{1}{2}}$ or 2 M1: Expands $(... + \lambda x)^{\frac{1}{2}}$ to give at least 2 terms which can be simplified or un-simplified, E.g. $1 + \left(\frac{1}{2}\right)(\lambda x)$ or $\left(\frac{1}{2}\right)(\lambda x) + \frac{\left(\frac{1}{2}\right)(-\frac{1}{2})}{2!}(\lambda x)^2$ or $1 + \dots + \frac{\left(\frac{1}{2}\right)(-\frac{1}{2})}{2!}(\lambda x)^2$ where λ is a numerical value and where $\lambda \neq 1$. **A1ft:** A correct simplified or un-simplified $1 + \left(\frac{1}{2}\right)(\lambda x) + \frac{\left(\frac{1}{2}\right)(-\frac{1}{2})}{2!}(\lambda x)^2$ expansion with **consistent** (λx) A1: Fully correct solution leading to $2 + \frac{5}{4}x + kx^2$, where $k = -\frac{25}{64}$ (b)(i) M1: Attempts to substitute $x = \frac{1}{10}$ or 0.1 into $(4 + 5x)^{\frac{1}{2}}$ M1: A complete method of finding an approximate value for $\sqrt{2}$. E.g. • substituting $x = \frac{1}{10}$ or 0.1 into their part (a) binomial expansion and equating the result to an expression of the form $\alpha \sqrt{2}$ or $\frac{\beta}{\sqrt{2}}$; α , $\beta \neq 0$ • followed by re-arranging to give $\sqrt{2} = ...$ A1: $\frac{181}{128}$ or any equivalent fraction, e.g. $\frac{362}{256}$ or $\frac{543}{384}$ Also allow $\frac{256}{181}$ or any equivalent fraction (b)(ii) **B1:** Explains that the approximation is valid because $x = \frac{1}{10}$ satisfies $|x| < \frac{4}{5}$ | Question | Scheme | Marks | AOs | |----------|---|-------|------| | 3 (a) | $a_1 = 3$, $a_2 = 0$, $a_3 = 1.5$, $a_4 = 3$ | M1 | 1.1b | | | $\sum_{r=1}^{100} a_r = 33(4.5) + 3$ | M1 | 2.2a | | | = 151.5 | A1 | 1.1b | | | | (3) | | | (b) | $\sum_{r=1}^{100} a_r + \sum_{r=1}^{99} a_r = (2)(151.5) - 3 = 300$ | B1ft | 2.2a | | | | (1) | | (4 marks) # **Question 3 Notes:** (a) M1: Uses the formula $a_{n+1} = \frac{a_n - 3}{a_n - 2}$, with $a_1 = 3$ to generate values for a_2 , a_3 and a_4 M1: Finds $a_4 = 3$ and deduces $\sum_{r=1}^{100} a_r = 33("3" + "0" + "1.5") + "3"$ **A1:** which leads to a correct answer of 151.5 **(b)** **B1ft:** Follow through on their periodic function. Deduces that either • $$\sum_{r=1}^{100} a_r + \sum_{r=1}^{99} a_r = (2)("151.5") - 3 = 300$$ • $$\sum_{r=1}^{100} a_r + \sum_{r=1}^{99} a_r = "151.5" + (33)("3" + "0" + "1.5") = 151.5 + 148.5 = 300$$ | Question | Scheme | Marks | AOs | |----------|--|-------|------| | 4 (a) | $\overrightarrow{OA} = \mathbf{i} + 7\mathbf{j} - 2\mathbf{k}, \ \overrightarrow{OB} = 4\mathbf{i} + 3\mathbf{j} + 3\mathbf{k}, \ \overrightarrow{OC} = 2\mathbf{i} + 10\mathbf{j} + 9\mathbf{k}$ | | | | | $\overrightarrow{OD} = \overrightarrow{OC} + \overrightarrow{BA} = (2\mathbf{i} + 10\mathbf{j} + 9\mathbf{k}) + (-3\mathbf{i} + 4\mathbf{j} - 5\mathbf{k})$ or $\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{BC} = (\mathbf{i} + 7\mathbf{j} - 2\mathbf{k}) + (-2\mathbf{i} + 7\mathbf{j} + 6\mathbf{k})$ | M1 | 3.1a | | | So $\overrightarrow{OD} = -\mathbf{i} + 14\mathbf{j} + 4\mathbf{k}$ | A1 | 1.1b | | | | (2) | | | (b) | $\left\{ \overrightarrow{AB} = 3\mathbf{i} - 4\mathbf{j} + 5\mathbf{k} \implies \right\} \left \overrightarrow{AB} \right = \sqrt{(3)^2 + (-4)^2 + (5)^2} \left\{ = \sqrt{50} = 5\sqrt{2} \right\}$ | M1 | 1.1b | | | As $ \overrightarrow{AX} = 10\sqrt{2}$ then $ \overrightarrow{AX} = 2 \overrightarrow{AB} \Rightarrow \overrightarrow{AX} = 2\overrightarrow{AB}$ | | | | | $\overrightarrow{OX} = \overrightarrow{OA} + 2\overrightarrow{AB} = (\mathbf{i} + 7\mathbf{j} - 2\mathbf{k}) + 2(3\mathbf{i} - 4\mathbf{j} + 5\mathbf{k})$ or $\overrightarrow{OX} = \overrightarrow{OB} + \overrightarrow{AB} = (4 + 3\mathbf{j} + 3\mathbf{k}) + (3\mathbf{i} - 4\mathbf{j} + 5\mathbf{k})$ | M1 | 3.1a | | | So $\overrightarrow{OX} = 7\mathbf{i} - \mathbf{j} + 8\mathbf{k}$ only | A1 | 1.1b | | | | (3) | | (5 marks) # **Question 4 Notes:** (a) M1: A complete method for finding the position vector of D **A1:** $$-\mathbf{i} + 14\mathbf{j} + 4\mathbf{k}$$ or $\begin{pmatrix} -1 \\ 14 \\ 4 \end{pmatrix}$ **(b)** **M1:** A complete attempt to find $|\overrightarrow{AB}|$ or $|\overrightarrow{BA}|$ M1: A complete process for finding the position vector of X **A1:** $$7\mathbf{i} - \mathbf{j} + 8\mathbf{k}$$ or $\begin{pmatrix} 7 \\ -1 \\ 8 \end{pmatrix}$ | Question | Scheme | Marks | AOs | |----------|---|-------|--------| | 5 (a)(i) | $f(x) = x^3 + ax^2 - ax + 48, \ x \in \mathbb{R}$ | | | | | $f(-6) = (-6)^3 + a(-6)^2 - a(-6) + 48$ | M1 | 1.1b | | | $= -216 + 36a + 6a + 48 = 0 \implies 42a = 168 \implies a = 4 *$ | A1* | 1.1b | | (a)(ii) | Hence, $f(x) = (x+6)(x^2-2x+8)$ | M1 | 2.2a | | | Hence, $I(x) = (x + 6)(x - 2x + 8)$ | A1 | 1.1b | | | | (4) | | | (b) | $2\log_2(x+2) + \log_2 x - \log_2(x-6) = 3$ | | | | | E.g.
• $\log_2(x+2)^2 + \log_2 x - \log_2(x-6) = 3$
• $2\log_2(x+2) + \log_2\left(\frac{x}{x-6}\right) = 3$ | M1 | 1.2 | | | $\log_2\left(\frac{x(x+2)^2}{(x-6)}\right) = 3 \qquad \left[\text{ or } \log_2\left(x(x+2)^2\right) = \log_2\left(8(x-6)\right)\right]$ | M1 | 1.1b | | | $\left(\frac{x(x+2)^2}{(x-6)}\right) = 2^3$ {i.e. $\log_2 a = 3 \implies a = 2^3 \text{ or } 8$ } | B1 | 1.1b | | | $x(x+2)^2 = 8(x-6) \implies x(x^2+4x+4) = 8x-48$ | | | | | $\Rightarrow x^3 + 4x^3 + 4x = 8x - 48 \Rightarrow x^3 + 4x^3 - 4x + 48 = 0 *$ | A1 * | 2.1 | | (0) | 21 (+ 2) + 1 1 (- () 2 + - 3 + 4 3 4 + 40 0 | (4) | | | (c) | $2\log_2(x+2) + \log_2 x - \log_2(x-6) = 3 \implies x^3 + 4x^3 - 4x + 48 = 0$ | | | | | $\Rightarrow (x+6)(x^2 - 2x + 8) = 0$ | | | | | Reason 1: E.g. | | | | | • $\log_2 x$ is not defined when $x = -6$ | | | | | • $\log_2(x-6)$ is not defined when $x=-6$ | | | | | • $x = -6$, but $\log_2 x$ is only defined for $x > 0$ | | | | | Reason 2: | | | | | • $b^2 - 4ac = -28 < 0$, so $(x^2 - 2x + 8) = 0$ has no (real) roots | | | | | At least one of Reason 1 or Reason 2 | B1 | 2.4 | | | Both Reason 1 and Reason 2 | B1 | 2.1 | | | | (2) | | | | (10 mark | | narks) | # **Question 5 Notes:** (a)(i) M1: Applies f(-6) A1*: Applies f(-6) = 0 to show that a = 4 (a)(ii) M1: Deduces (x + 6) is a factor of f(x) and attempts to find a quadratic factor of f(x) by either equating coefficients or by algebraic long division **A1:** $(x+6)(x^2-2x+8)$ **(b)** M1: Evidence of applying a correct law of logarithms M1: Uses correct laws of logarithms to give either • an expression of the form $\log_{10}(h(x)) = k$, where k is a constant • an expression of the form $\log_2(g(x)) = \log_2(h(x))$ **B1:** Evidence in their working of $\log_2 a = 3 \implies a = 2^3$ or 8 A1*: Correctly proves $x^3 + 4x^3 - 4x + 48 = 0$ with no errors seen (c) **B1:** See scheme **B1:** See scheme | Question | Scheme | Marks | AOs | |--------------|--|-------|------| | 6 (a) | Attempts to use an appropriate model;
e.g. $y = A(3-x)(3+x)$ or $y = A(9-x^2)$ | M1 | 3.3 | | | e.g. $y = A(9-x^2)$
Substitutes $x = 0$, $y = 5 \Rightarrow 5 = A(9-0) \Rightarrow A = \frac{5}{9}$ | M1 | 3.1b | | | $y = \frac{5}{9}(9 - x^2)$ or $y = \frac{5}{9}(3 - x)(3 + x)$, $\{-3 \le x \le 3\}$ | A1 | 1.1b | | | | (3) | | | (b) | Substitutes $x = \frac{2.4}{2}$ into their $y = \frac{5}{9}(9 - x^2)$ | M1 | 3.4 | | | $y = \frac{5}{9}(9 - x^2) = 4.2 > 4.1 \implies \text{Coach can enter the tunnel}$ | A1 | 2.2b | | | | (2) | | | (b)
Alt 1 | $4.1 = \frac{5}{9}(9 - x^2) \implies x = \frac{9\sqrt{2}}{10}, \text{ so maximum width} = 2\left(\frac{9\sqrt{2}}{10}\right)$ | M1 | 3.4 | | | $= 2.545 > 2.4 \implies \text{Coach can enter the tunnel}$ | A1 | 2.2b | | | | (2) | | | (c) | E.g. Coach needs to enter through the centre of the tunnel. This will only be possible if it is a one-way tunnel In real-life the road may be cambered (and not horizontal) The quadratic curve BCA is modelled for the entrance to the tunnel but we do not know if this curve is valid throughout the entire length of the tunnel There may be overhead lights in the tunnel which may block the path of the coach | B1 | 3.5b | | | | (1) | | (6 marks) # **Question 6 Notes:** | (a) | | |-----|---| | M1: | Translates the given situation into an appropriate quadratic model – see scheme | | M1: | Applies the maximum height constraint in an attempt to find the equation of the model – see scheme | | A1: | Finds a suitable equation – see scheme | | (b) | | | M1: | See scheme | | A1: | Applies a fully correct argument to infer {by assuming that curve <i>BCA</i> is quadratic and the given measurements are correct}, that is possible for the coach to enter the tunnel | | (c) | | | B1: | See scheme | | Question | Scheme | Marks | AOs | |------------|--|----------|--------------| | 7 | $\left\{ \int x e^{2x} dx \right\}, \begin{cases} u = x & \Rightarrow \frac{du}{dx} = 1 \\ \frac{dv}{dx} = e^{2x} & \Rightarrow v = \frac{1}{2}e^{2x} \end{cases}$ | | | | | $\left\{ \int x e^{2x} dx \right\} = \frac{1}{2} x e^{2x} - \int \frac{1}{2} e^{2x} \left\{ dx \right\}$ | M1 | 3.1a | | | $\left\{ \int 2e^{2x} - xe^{2x} dx \right\} = e^{2x} - \left(\frac{1}{2} x e^{2x} - \int \frac{1}{2} e^{2x} \{ dx \} \right)$ | M1 | 1.1b | | | $= e^{2x} - \left(\frac{1}{2}xe^{2x} - \frac{1}{4}e^{2x}\right)$ | A1 | 1.1b | | | Area(R) = $\int_0^2 2e^{2x} - xe^{2x} dx = \left[\frac{5}{4}e^{2x} - \frac{1}{2}xe^{2x} \right]_0^2$ | M1 | 2.2a | | | $= \left(\frac{5}{4}e^4 - e^4\right) - \left(\frac{5}{4}e^{2(0)} - \frac{1}{2}(0)e^0\right) = \frac{1}{4}e^4 - \frac{5}{4}$ | A1 | 2.1 | | | | (5) | | | 7
Alt 1 | $\left\{ \int 2e^{2x} - xe^{2x} dx = \int (2-x)e^{2x} dx \right\}, \begin{cases} u = 2-x \implies \frac{du}{dx} = -1\\ \frac{dv}{dx} = e^{2x} \implies v = \frac{1}{2}e^{2x} \end{cases}$ | | | | | $= \frac{1}{2}(2-x)e^{2x} - \int -\frac{1}{2}e^{2x} \{dx\}$ | M1 | 3.1a | | | $= \frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x}$ | M1
A1 | 1.1b
1.1b | | | $= \frac{1}{2}(2-x)e^{-x} + \frac{1}{4}e^{-x}$ $\left\{ \operatorname{Area}(R) = \int_0^2 (2-x)e^{2x} dx = \right\} \left[\frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x} \right]_0^2$ | M1 | 2.2a | | | $= \left(0 + \frac{1}{4}e^4\right) - \left(\frac{1}{2}(2)e^0 + \frac{1}{4}e^0\right) = \frac{1}{4}e^4 - \frac{5}{4}$ | A1 | 2.1 | | | | (5) | | | | | (5 n | narks) | # **Question 7 Notes:** - M1: Attempts to solve the problem by recognising the need to apply a method of integration by parts on either xe^{2x} or $(2-x)e^{2x}$. Allow this mark for either - $\pm xe^{2x} \rightarrow \pm \lambda xe^{2x} \pm \int \mu e^{2x} \{dx\}$ - $(2-x)e^{2x} \rightarrow \pm \lambda(2-x)e^{2x} \pm \int \mu e^{2x} \{dx\}$ where λ , $\mu \neq 0$ are constants. - M1: For either - $2e^{2x} xe^{2x} \rightarrow e^{2x} \pm \frac{1}{2}xe^{2x} \pm \int \frac{1}{2}e^{2x} \{dx\}$ - $(2-x)e^{2x} \to \pm \frac{1}{2}(2-x)e^{2x} \pm \int \frac{1}{2}e^{2x} \{dx\}$ - A1: Correct integration which can be simplified or un-simplified. E.g. - $2e^{2x} xe^{2x} \rightarrow e^{2x} \left(\frac{1}{2}xe^{2x} \frac{1}{4}e^{2x}\right)$ - $2e^{2x} xe^{2x} \rightarrow e^{2x} \frac{1}{2}xe^{2x} + \frac{1}{4}e^{2x}$ - $2e^{2x} xe^{2x} \rightarrow \frac{5}{4}e^{2x} \frac{1}{2}xe^{2x}$ - $(2-x)e^{2x} \rightarrow \frac{1}{2}(2-x)e^{2x} + \frac{1}{4}e^{2x}$ - M1: Deduces that the upper limit is 2 and uses limits of 2 and 0 on their integrated function - A1: Correct proof leading to $pe^4 + q$, where $p = \frac{1}{4}$, $q = -\frac{5}{4}$ | Question | Scheme | Marks | AOs | |----------|---|-------|------| | 8 (a) | Total amount = $\frac{2100(1 - (1.012)^{14})}{1 - 1.012}$ or $\frac{2100((1.012)^{14} - 1)}{1.012 - 1}$ | M1 | 3.1b | | | = 31806.9948 = 31800 (tonnes) (3 sf) | A1 | 1.1b | | | | (2) | | | | Total Cost = $5.15(2000(14)) + 6.45(31806.9948 (2000)(14))$ | M1 | 3.1b | | | 10th Cost 3.13(2000(14)) 0.43(31000.7740 (2000)(14)) | M1 | 1.1b | | | =5.15(28000) + 6.45(3806.9948) = 144200 + 24555.116 | | | | | = 168755.116 = £169000 (nearest £1000) | A1 | 3.2a | | | | (3) | | (5 marks) # **Question 8 Notes:** (a) M1: Attempts to apply the correct geometric summation formula with either n = 13 or n = 14, a = 2100 and r = 1.012 (Condone r = 1.12) A1: Correct answer of 31800 (tonnes) **(b)** M1: Fully correct method to find the total cost M1: For either - 5.15(2000(14)) {= 144200} - 6.45("31806.9948..." (2000)(14)) {= 24555.116...} - 5.15(2000(13)) {= 133900} - 6.45("29354.73794..." (2000)(13)) {= 21638.059...} A1: Correct answer of £169000 Note: Using rounded answer in part (a) gives 168710 which becomes £169000 (nearest £1000) | Question | Scheme | Marks | AOs | |----------|--|-------|--------| | 9 | Gradient of chord = $\frac{(2(x+h)^3 + 5) - (2x^3 + 5)}{x+h-h}$ | B1 | 1.1b | | | | M1 | 2.1 | | | $(x+h)^3 = x^3 + 3x^2h + 3xh^2 + h^3$ | B1 | 1.1b | | | Gradient of chord = $\frac{(2(x^3 + 3x^2h + 3xh^2 + h^3) + 5) - (2x^3 + 5)}{1 + h - 1}$ | | | | | $= \frac{2x^3 + 6x^2h + 6xh^2 + 2h^3 + 5 - 2x^3 - 5}{1 + h - 1}$ | | | | | $= \frac{6x^2h + 6xh^2 + 2h^3}{h}$ | | | | | $=6x^2+6xh+2h^2$ | A1 | 1.1b | | | $\frac{dy}{dx} = \lim_{h \to 0} (6x^2 + 6xh + 2h^2) = 6x^2 \text{ and so at } P, \frac{dy}{dx} = 6(1)^2 = 6$ | A1 | 2.2a | | | | (5) | | | 9 | Let a point Q have x coordinate $1 + h$, so $y_Q = 2(1+h)^3 + 5$ | B1 | 1.1b | | Alt 1 | ${P(1,7), Q(1+h, 2(1+h)^3+3) \Rightarrow}$ | | | | | Gradient $PQ = \frac{2(1+h)^3 + 5 - 7}{1+h-1}$ | M1 | 2.1 | | | $(1+h)^3 = 1 + 3h + 3h^2 + h^3$ | B1 | 1.1b | | | Gradient $PQ = \frac{2(1+3h+3h^2+h^3)+5-7}{1+h-1}$ | | | | | $=\frac{2+6h+6h^2+2h^3+5-7}{1+h-1}$ | | | | | $=\frac{6h+6h^2+2h^3}{h}$ | | | | | $=6+6h+2h^2$ | A1 | 1.1b | | | $\frac{\mathrm{d}y}{\mathrm{d}x} = \lim_{h \to 0} \left(6 + 6h + 2h^2 \right) = 6$ | A1 | 2.2a | | | | (5) | | | | | (5 n | narks) | #### **Question 9 Notes:** **B1:** $2(x+h)^3 + 5$, seen or implied M1: Begins the proof by attempting to write the gradient of the chord in terms of x and h **B1:** $(x+h)^3 \rightarrow x^3 + 3x^2h + 3xh^2 + h^3$, by expanding brackets or by using a correct binomial expansion M1: Correct process to obtain the gradient of the chord as $\alpha x^2 + \beta xh + \gamma h^2$, $\alpha, \beta, \gamma \neq 0$ Correctly shows that the gradient of the chord is $6x^2 + 6xh + 2h^2$ and applies a limiting argument to deduce when $y = 2x^3 + 5$, $\frac{dy}{dx} = 6x^2$. E.g. $\lim_{h \to 0} \left(6x^2 + 6xh + 2h^2 \right) = 6x^2$. Finally, deduces that at the point P, $\frac{dy}{dx} = 6$. **Note:** δx can be used in place of h Alt 1 **B1:** Writes down the y coordinate of a point close to P. E.g. For a point *Q* with x = 1 + h, $\{y_Q\} = 2(1+h)^3 + 5$ M1: Begins the proof by attempting to write the gradient of the chord PQ in terms of h **B1:** $(1+h)^3 \rightarrow 1+3h+3h^2+h^3$, by expanding brackets or by using a correct binomial expansion M1: Correct process to obtain the gradient of the chord PQ as $\alpha + \beta h + \gamma h^2$, $\alpha, \beta, \gamma \neq 0$ A1: Correctly shows that the gradient of PQ is $6 + 6h + 2h^2$ and applies a limiting argument to deduce that at the point P on $y = 2x^3 + 5$, $\frac{dy}{dx} = 6$. E.g. $\lim_{h \to 0} (6 + 6h + 2h^2) = 6$ **Note:** For Alt 1, δx can be used in place of h | Question | Scheme | Marks | AOs | |----------|---|-------|--------| | 10 (a) | $y = \frac{3x-5}{x+1} \Rightarrow y(x+1) = 3x-5 \Rightarrow xy+y=3x-5 \Rightarrow y+5=3x-xy$ | M1 | 1.1b | | | $\Rightarrow y + 5 = x(3 - y) \Rightarrow \frac{y + 5}{3 - y} = x$ | M1 | 2.1 | | | Hence $f^{-1}(x) = \frac{x+5}{3-x}, x \in \mathbb{R}, x \neq 3$ | A1 | 2.5 | | | | (3) | | | (b) | $ff(x) = \frac{3\left(\frac{3x-5}{x+1}\right) - 5}{\left(\frac{3x-5}{x+1}\right) + 1}$ | M1 | 1.1a | | | $= \frac{3(3x-5)-5(x+1)}{x+1}$ $= \frac{3(3x-5)-5(x+1)}{(3x-5)+(x+1)}$ | M1 | 1.1b | | | $= \frac{(3x-5)+(x+1)}{x+1}$ | A1 | 1.1b | | | $= \frac{9x - 15 - 5x - 5}{3x - 5 + x + 1} = \frac{4x - 20}{4x - 4} = \frac{x - 5}{x - 1} \text{(note that } a = -5\text{)}$ | A1 | 2.1 | | | | (4) | | | (c) | $fg(2) = f(4-6) = f(-2) = \frac{3(-2)-5}{-2+1} = 11$ | M1 | 1.1b | | () | $\frac{19(2)-1(4-6)-1(-2)}{-2+1},-11$ | A1 | 1.1b | | | | (2) | | | (d) | $g(x) = x^2 - 3x = (x - 1.5)^2 - 2.25$. Hence $g_{min} = -2.25$ | M1 | 2.1 | | | Either $g_{min} = -2.25$ or $g(x) \ge -2.25$ or $g(5) = 25 - 15 = 10$ | B1 | 1.1b | | | $-2.25 \le g(x) \le 10$ or $-2.25 \le y \le 10$ | A1 | 1.1b | | | | (3) | | | (e) | E.g. the function g is many-one the function g is not one-one the inverse is one-many g(0) = g(3) = 0 | B1 | 2.4 | | | | (1) | | | | | (13 n | narks) | #### **Question 10 Notes:** (a) M1: Attempts to find the inverse by cross-multiplying and an attempt to collect all the x-terms (or swapped y-terms) onto one side **M1:** A fully correct method to find the inverse A1: A correct $f^{-1}(x) = \frac{x+5}{3-x}$, $x \in \mathbb{R}$, $x \neq 3$, expressed fully in function notation (including the domain) **(b)** M1: Attempts to substitute $f(x) = \frac{3x-5}{x+1}$ into $\frac{3f(x)-5}{f(x)+1}$ M1: Applies a method of "rationalising the denominator" for both their numerator and their denominator. A1: $\frac{3(3x-5)-5(x+1)}{x+1}$ which can be simplified or un-simplified A1: Shows $ff(x) = \frac{x+a}{x-1}$ where a = -5 or $ff(x) = \frac{x-5}{x-1}$, with no errors seen. (c) M1: Attempts to substitute the result of g(2) into f A1: Correctly obtains fg(2) = 11 (d) **M1:** Full method to establish the minimum of g. E.g. • $(x \pm \alpha)^2 + \beta$ leading to $g_{\min} = \beta$ • Finds the value of x for which g'(x) = 0 and inserts this value of x back into g(x) in order to find to g_{min} **B1:** For either • finding the correct minimum value of g (Can be implied by $g(x) \ge -2.25$ or g(x) > -2.25) • stating g(5) = 25 - 15 = 10 A1: States the correct range for g. E.g. $-2.25 \le g(x) \le 10$ or $-2.25 \le y \le 10$ **(e)** **B1:** See scheme | Question | Scheme | Marks | AOs | |----------|---|-------|--------| | 11 (a) | $f'(x) = k - 4x - 3x^2$ | | | | | f''(x) = -4 - 6x = 0 | M1 | 1.1b | | | Criteria 1 Either | | | | | $f''(x) = -4 - 6x = 0 \implies x = \frac{4}{-6} \implies x = -\frac{2}{3}$ | | | | | or $f''\left(-\frac{2}{3}\right) = -4 - 6\left(-\frac{2}{3}\right) = 0$ | | | | | Criteria 2 Either | | | | | • $f''(-0.7) = -4 - 6(-0.7) = 0.2 > 0$
f''(-0.6) = -4 - 6(-0.6) = -0.4 < 0 | | | | | $\bullet \mathbf{f'''}\left(-\frac{2}{3}\right) = -6 \neq 0$ | | | | | At least one of Criteria 1 or Criteria 2 | B1 | 2.4 | | | Both Criteria 1 and Criteria 2 | | | | | and concludes C has a point of inflection at $x = -\frac{2}{3}$ | A1 | 2.1 | | | | (3) | | | (b) | $f'(x) = k - 4x - 3x^2$, $AB = 4\sqrt{2}$ | | | | | $f(x) = kx - 2x^2 - x^3 \left\{ + c \right\}$ | M1 | 1.1b | | | | A1 | 1.1b | | | $f(0) = 0 \text{ or } (0,0) \Rightarrow c = 0 \Rightarrow f(x) = kx - 2x^2 - x^3$ $\{f(x) = 0 \Rightarrow\} f(x) = x(k - 2x - x^2) = 0 \Rightarrow \{x = 0,\} k - 2x - x^2 = 0$ | A1 | 2.2a | | | ${x^2 + 2x - k = 0} \implies (x+1)^2 - 1 - k = 0, x =$ | M1 | 2.1 | | | $\Rightarrow x = -1 \pm \sqrt{k+1}$ | A1 | 1.1b | | | $AB = \left(-1 + \sqrt{k+1}\right) - \left(-1 - \sqrt{k+1}\right) = 4\sqrt{2} \implies k = \dots$ | M1 | 2.1 | | | So, $2\sqrt{k+1} = 4\sqrt{2} \implies k = 7$ | A1 | 1.1b | | | | (7) | | | | | (10 1 | marks) | # **Question 11 Notes:** (a) **M1:** | E.g. - attempts to find $f''\left(-\frac{2}{3}\right)$ - finds f''(x) and sets the result equal to 0 **B1:** See scheme A1: See scheme **(b)** M1: Integrates f'(x) to give $f(x) = \pm kx \pm \alpha x^2 \pm \beta x^3$, $\alpha, \beta \neq 0$ with or without the constant of integration A1: $f(x) = kx - 2x^2 - x^3$, with or without the constant of integration Finds $f(x) = kx - 2x^2 - x^3 + c$, and makes some reference to y = f(x) passing through the origin to deduce c = 0. Proceeds to produce the result $k - 2x - x^2 = 0$ or $x^2 + 2x - k = 0$ M1: Uses a valid method to solve the quadratic equation to give x in terms of k A1 Correct roots for x in terms of k. i.e. $x = -1 \pm \sqrt{k+1}$ **M1:** Applies $AB = 4\sqrt{2}$ on $x = -1 \pm \sqrt{k+1}$ in a complete method to find k = ... A1: Finds k = 7 from correct solution only | Question | Scheme | Marks | AOs | |----------|---|-------|--------| | 12 | $\int_0^{\frac{\pi}{2}} \frac{\sin 2\theta}{1 + \cos \theta} \ d\theta$ | | | | | Attempts this question by applying the substitution $u = 1 + \cos \theta$ | | | | | and progresses as far as achieving $\int \frac{(u-1)}{u}$ | M1 | 3.1a | | | $u = 1 + \cos\theta \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}\theta} = -\sin\theta \text{ and } \sin 2\theta = 2\sin\theta\cos\theta$ | M1 | 1.1b | | | $\left\{ \int \frac{\sin 2\theta}{1 + \cos \theta} d\theta = \right\} \int \frac{2\sin \theta \cos \theta}{1 + \cos \theta} d\theta = \int \frac{-2(u-1)}{u} du$ | A1 | 2.1 | | | $2\int_{-\infty}^{\infty} \left(1 - 1\right) dy = 2(y - 1\pi y)$ | M1 | 1.1b | | | $-2\int \left(1 - \frac{1}{u}\right) du = -2(u - \ln u)$ | M1 | 1.1b | | | $\left\{ \int_0^{\frac{\pi}{2}} \frac{\sin 2\theta}{1 + \cos \theta} d\theta = \right\} = -2 \left[u - \ln u \right]_2^1 = -2((1 - \ln 1) - (2 - \ln 2))$ | M1 | 1.1b | | | $= -2(-1 + \ln 2) = 2 - 2\ln 2 *$ | A1* | 2.1 | | | | (7) | | | 12 | Attempts this question by applying the substitution $u = \cos \theta$ | | | | Alt 1 | and progresses as far as achieving $\int \frac{u}{u+1}$ | M1 | 3.1a | | | $u = \cos\theta \Rightarrow \frac{\mathrm{d}u}{\mathrm{d}\theta} = -\sin\theta \text{ and } \sin 2\theta = 2\sin\theta\cos\theta$ | M1 | 1.1b | | | $\left\{ \int \frac{\sin 2\theta}{1 + \cos \theta} d\theta = \right\} \int \frac{2\sin \theta \cos \theta}{1 + \cos \theta} d\theta = \int \frac{-2u}{u+1} du$ | A1 | 2.1 | | | $\left\{ = -2 \int \frac{(u+1)-1}{u+1} \mathrm{d}u = -2 \int 1 - \frac{1}{u+1} \mathrm{d}u \right\} = -2(u - \ln(u+1))$ | M1 | 1.1b | | | | M1 | 1.1b | | | $\left\{ \int_0^{\frac{\pi}{2}} \frac{\sin 2\theta}{1 + \cos \theta} d\theta = \right\} = -2 \left[u - \ln(u+1) \right]_1^0 = -2((0 - \ln 1) - (1 - \ln 2))$ | M1 | 1.1b | | | $= -2(-1 + \ln 2) = 2 - 2\ln 2 *$ | A1* | 2.1 | | | | (7) | | | | | | narks) | | | | ` | | # **Question 12 Notes:** M1: See scheme **M1:** Attempts to differentiate $u = 1 + \cos\theta$ to give $\frac{du}{d\theta} = \dots$ and applies $\sin 2\theta = 2\sin\theta\cos\theta$ A1: Applies $u = 1 + \cos\theta$ to show that the integral becomes $\int \frac{-2(u-1)}{u} du$ M1: Achieves an expression in u that can be directly integrated (e.g. dividing each term by u or applying partial fractions) and integrates to give an expression in u of the form $\pm \lambda u \pm \mu \ln u$, $\lambda, \mu \neq 0$ M1: For integration in u of the form $\pm 2(u - \ln u)$ M1: Applies *u*-limits of 1 and 2 to an expression of the form $\pm \lambda u \pm \mu \ln u$, $\lambda, \mu \neq 0$ and subtracts either way round A1*: Applies u-limits the right way round, i.e. • $\int_{2}^{1} \frac{-2(u-1)}{u} du = -2 \int_{2}^{1} \left(1 - \frac{1}{u}\right) du = -2 \left[u - \ln u\right]_{2}^{1} = -2((1 - \ln 1) - (2 - \ln 2))$ • $\int_{2}^{1} \frac{-2(u-1)}{u} du = 2 \int_{1}^{2} \left(1 - \frac{1}{u}\right) du = 2 \left[u - \ln u\right]_{1}^{2} = 2((2 - \ln 2) - (1 - \ln 1))$ and correctly proves $\int_{0}^{\frac{\pi}{2}} \frac{\sin 2\theta}{1 + \cos \theta} d\theta = 2 - 2\ln 2$, with no errors seen Alt 1 M1: See scheme M1: Attempts to differentiate $u = \cos \theta$ to give $\frac{du}{d\theta} = \dots$ and applies $\sin 2\theta = 2\sin \theta \cos \theta$ A1: Applies $u = \cos \theta$ to show that the integral becomes $\int \frac{-2u}{u+1} du$ M1: Achieves an expression in u that can be directly integrated (e.g. by applying partial fractions or a substitution v = u+1) and integrates to give an expression in u of the form $\pm \lambda u \pm \mu \ln(u+1)$, $\lambda, \mu \neq 0$ or $\pm \lambda v \pm \mu \ln v$, $\lambda, \mu \neq 0$, where v = u+1 **M1:** For integration in *u* in the form $\pm 2(u - \ln(u+1))$ M1: Either • Applies *u*-limits of 0 and 1 to an expression of the form $\pm \lambda u \pm \mu \ln(u+1)$, $\lambda, \mu \neq 0$ and subtracts either way round • Applies v-limits of 1 and 2 to an expression of the form $\pm \lambda v \pm \mu \ln v$, $\lambda, \mu \neq 0$, where v = u + 1 and subtracts either way round A1*: Applies *u*-limits the right way round, (o.e. in v) i.e. • $\int_{1}^{0} \frac{-2u}{u+1} du = -2 \int_{1}^{0} \left(1 - \frac{1}{u+1} \right) du = -2 \left[u - \ln(u+1) \right]_{1}^{0} = -2((0 - \ln 1) - (1 - \ln 2))$ • $\int_{1}^{0} \frac{-2u}{u+1} du = 2 \int_{0}^{1} \left(1 - \frac{1}{u+1} \right) du = 2 \left[u - \ln(u+1) \right]_{0}^{1} = 2((1-\ln 2) - (0-\ln 1))$ and correctly proves $\int_0^{\frac{\pi}{2}} \frac{\sin 2\theta}{1 + \cos \theta} d\theta = 2 - 2\ln 2$, with no errors seen | Question | Scheme | Marks | AOs | |----------|--|-------|--------| | 13 (a) | R = 2.5 | B1 | 1.1b | | | $\tan \alpha = \frac{1.5}{2}$ o.e. | M1 | 1.1b | | | $\alpha = 0.6435$, so $2.5\sin(\theta - 0.6435)$ | A1 | 1.1b | | | | (3) | | | (b) | e.g. $D = 6 + 2\sin\left(\frac{4\pi(0)}{25}\right) - 1.5\cos\left(\frac{4\pi(0)}{25}\right) = 4.5 \text{ m}$
or $D = 6 + 2.5\sin\left(\frac{4\pi(0)}{25} - 0.6435\right) = 4.5 \text{ m}$ | B1 | 3.4 | | | | (1) | | | (c) | $D_{\text{max}} = 6 + 2.5 = 8.5 \text{ m}$ | B1ft | 3.4 | | | | (1) | | | (d) | Sets $\frac{4\pi t}{25}$ – "0.6435" = $\frac{5\pi}{2}$ or $\frac{\pi}{2}$ | M1 | 1.1b | | | Afternoon solution $\Rightarrow \frac{4\pi t}{25} - "0.6435" = \frac{5\pi}{2} \Rightarrow t = \frac{25}{4\pi} \left(\frac{5\pi}{2} + "0.6435" \right)$ | M1 | 3.1b | | | $\Rightarrow t = 16.9052 \Rightarrow \text{Time} = 16:54 \text{ or } 4:54 \text{ pm}$ | A1 | 3.2a | | | | (3) | | | (e)(i) | • An attempt to find the depth of water at 00:00 on 19th October 2017 for at least one of either Tom's model or Jolene's model. | M1 | 3.4 | | | At 00:00 on 19th October 2017, | A1 | 3.5a | | (ii) | To make the model continuous, e.g. • $H = 5.22 + 2\sin\left(\frac{4\pi x}{25}\right) - 1.5\cos\left(\frac{4\pi x}{25}\right)$, $0 \le x < 24$ • $H = 6 + 2\sin\left(\frac{4\pi(x + 24)}{25}\right) - 1.5\cos\left(\frac{4\pi(x + 24)}{25}\right)$, $0 \le x < 24$ | B1 | 3.3 | | | | (3) | | | | | (11 n | narks) | | Question | Scheme | Marks | AOs | |-----------------|---|-------|------| | 13 (d)
Alt 1 | Sets $\frac{4\pi t}{25}$ – "0.6435" = $\frac{\pi}{2}$ | M1 | 1.1b | | | Period = $2\pi \div \left(\frac{4\pi}{25}\right) = 12.5$
Afternoon solution $\Rightarrow t = 12.5 + \frac{25}{4\pi} \left(\frac{\pi}{2} + "0.6435"\right)$ | M1 | 3.1b | | | $\Rightarrow t = 16.9052 \Rightarrow \text{Time} = 16:54 \text{ or } 4:54 \text{ pm}$ | A1 | 3.2a | | | | (3) | | # **Question 13 Notes:** (a) **B1:** $$R = 2.5$$ Condone $R = \sqrt{6.25}$ M1: For either $$\tan \alpha = \frac{1.5}{2}$$ or $\tan \alpha = -\frac{1.5}{2}$ or $\tan \alpha = \frac{2}{1.5}$ or $\tan \alpha = -\frac{2}{1.5}$ **A1:** $\alpha = \text{awrt } 0.6435$ **(b)** **B1:** Uses Tom's model to find D = 4.5 (m) at 00:00 on 18th October 2017 (c) **B1ft:** Either 8.5 or follow through "6 + their R" (by using their R found in part (a)) (d) M1: Realises that $$D = 6 + 2\sin\left(\frac{4\pi t}{25}\right) - 1.5\cos\left(\frac{4\pi t}{25}\right) = 6 + "2.5"\sin\left(\frac{4\pi t}{25} - "0.6435"\right)$$ and so maximum depth occurs when $$\sin\left(\frac{4\pi t}{25} - "0.6435"\right) = 1 \Rightarrow \frac{4\pi t}{25} - "0.6435" = \frac{\pi}{2}$$ or $\frac{5\pi}{2}$ M1: Uses the model to deduce that a p.m. solution occurs when $\frac{4\pi t}{25}$ – "0.6435" = $\frac{5\pi}{2}$ and rearranges this equation to make t = ...Finds that maximum depth occurs in the afternoon at 16:54 or 4:54 pm A1: (d) Alt 1 **M1:** Maximum depth occurs when $$\sin\left(\frac{4\pi t}{25} - "0.6435"\right) = 1 \Rightarrow \frac{4\pi t}{25} - "0.6435" = \frac{\pi}{2}$$ M1: Rearranges to make t = ... and adds on the period, where period $= 2\pi \div \left(\frac{4\pi}{25}\right) \left\{= 12.5\right\}$ A1: Finds that maximum depth occurs in the afternoon at 16:54 or 4:54 pm | Quest | Question 13 Notes Continued: | | |------------|---|--| | (e)(i) | | | | M1: | See scheme | | | A1: | See scheme | | | | Note: Allow Special Case M1 for a candidate who just states that Jolene's model is not continuous at 00:00 on 19th October 2017 o.e. | | | (e)(ii) | | | (e)(ii) Uses the information to set up a new model for H. (See scheme) **B1**: | Question | Scheme | Marks | AOs | |-------------|--|-------|------| | 14 | $x = 4\cos\left(t + \frac{\pi}{6}\right), y = 2\sin t$ | | | | | $x + y = 4\left(\cos t \cos\left(\frac{\pi}{6}\right) - \sin t \sin\left(\frac{\pi}{6}\right)\right) + 2\sin t$ | M1 | 3.1a | | | $x + y = 4 \left(\cos t \cos \left(\frac{6}{6} \right) \right) + 2 \sin t$ | M1 | 1.1b | | | $x + y = 2\sqrt{3}\cos t$ | A1 | 1.1b | | | $\left(\frac{x+y}{2\sqrt{3}}\right)^2 + \left(\frac{y}{2}\right)^2 = 1$ | M1 | 3.1a | | | $\frac{(x+y)^2}{12} + \frac{y^2}{4} = 1$ | | | | | $(x+y)^2 + 3y^2 = 12$ | A1 | 2.1 | | | | (5) | | | 14
Alt 1 | $(x+y)^2 = \left(4\cos\left(t + \frac{\pi}{6}\right) + 2\sin t\right)^2$ | | | | | $= \left(4\left(\cos t \cos\left(\frac{\pi}{6}\right) - \sin t \sin\left(\frac{\pi}{6}\right)\right) + 2\sin t\right)^{2}$ | M1 | 3.1a | | | $= \left(4\left(\cos t \cos\left(\frac{1}{6}\right) - \sin t \sin\left(\frac{1}{6}\right)\right) + 2\sin t\right)$ | M1 | 1.1b | | | $= \left(2\sqrt{3}\cos t\right)^2 \text{or} 12\cos^2 t$ | A1 | 1.1b | | | So, $(x + y)^2 = 12(1 - \sin^2 t) = 12 - 12\sin^2 t = 12 - 12\left(\frac{y}{2}\right)^2$ | M1 | 3.1a | | | $(x+y)^2 + 3y^2 = 12$ | A1 | 2.1 | | | | (5) | | (5 marks) #### **Question 14 Notes:** M1: Looks ahead to the final result and uses the compound angle formula in a full attempt to write down an expression for x + y which is in terms of t only. M1: Applies the compound angle formula on their term in x. E.g. $\cos\left(t + \frac{\pi}{6}\right) \to \cos t \cos\left(\frac{\pi}{6}\right) \pm \sin t \sin\left(\frac{\pi}{6}\right)$ A1: Uses correct algebra to find $x + y = 2\sqrt{3}\cos t$ M1: Complete strategy of applying $\cos^2 t + \sin^2 t = 1$ on a rearranged $x + y = "2\sqrt{3}\cos t"$, $y = 2\sin t$ to achieve an equation in x and y only A1: Correctly proves $(x + y)^2 + ay^2 = b$ with both a = 3, b = 12, and no errors seen | Quest | Question 14 Notes Continued: | | |-------|--|--| | Alt 1 | | | | M1: | Apply in the same way as in the main scheme | | | M1: | Apply in the same way as in the main scheme | | | A1: | Uses correct algebra to find $(x + y)^2 = (2\sqrt{3}\cos t)^2$ or $(x + y)^2 = 12\cos^2 t$ | | | M1: | Complete strategy of applying $\cos^2 t + \sin^2 t = 1$ on $(x + y)^2 = ("2\sqrt{3}\cos t")^2$ to achieve an | | | | equation in x and y only | | | A1: | Correctly proves $(x + y)^2 + ay^2 = b$ with both $a = 3, b = 12$, and no errors seen | |