

Applied Mathematics P2 7 Trigonometry and modelling Booklet

Year 13

Name: ___________________________________

Class: ____________________________________

Contents

- 7.1) Addition formulae
- 7.2) Using the angle addition formulae
- 7.3) Double-angle formulae
- 7.4) Solving trigonometric equations
- 7.5) Simplifying $a \cos x \pm b \sin x$
- 7.6) Proving trigonometric identities
- 7.7) Modelling with trigonometric functions

Extract from Formulae booklet Past Paper Practice **Summary**

Prior knowledge check

7.1) Addition formulae

. We can easily disprove it with a counterexample.

590m: Use the compound angle formulae leading to $\tan x = a$

Given that

 $\sin(2x+45^{\circ}) = 2\cos(2x-30^{\circ})$

show that

 $\tan 2x = a$

where a is a constant to be found.

Express the following as a single sine, cosine or tangent, and evaluate:

a) $\sin 30^\circ \cos 60^\circ + \cos 30^\circ \sin 60^\circ$

b) $\cos 20^\circ \cos 25^\circ - \sin 20^\circ \sin 25^\circ$

c) $\frac{\tan \frac{\pi}{18} + \tan \frac{\pi}{9}}{1 - \tan \frac{\pi}{18} \tan \frac{\pi}{9}}$

Write in the form $sin(x \pm \theta)$ or $cos(x \pm \theta)$ where $0 < \theta < \frac{\pi}{2}$: $\frac{1}{2}(\sqrt{3}\sin x + \cos x)$

$$
\frac{1}{2}(\sqrt{3}\cos x - \sin x)
$$

7.2) Using the angle addition formulae

Worked Example Using the trigonometric angle addition formulae find: $sin 15^\circ$ tan 15°

Given that: $\sin A = \frac{8}{17}$ and $0^{\circ} < A < 90^{\circ}$, and $\cos B = -$ ଵ **Worked Example**
and $0^{\circ} < A < 90^{\circ}$, and $\cos B = -\frac{4}{5}$, *B* is obtuse, find the value of $\cos(A + B)$ $\frac{4}{5}$ D is obtained find the value of $\frac{1}{5}$, *B* is obtuse, find the value of $cos(A + B)$

Given that:

 $\sin A = \frac{8}{17}$ and $0^{\circ} < A < 90^{\circ}$, and $\cos B = -$ ଵ **Worked Example**

:

and 0° < A < 90°, and $\cos B = -\frac{4}{5}$, *B* is obtuse, find the value of $\tan(A - B)$ $\frac{4}{10}$ D is obtained find the value of $\frac{1}{5}$, *B* is obtuse, find the value of ta $n(A - B)$

Given that: $\sin A = \frac{8}{17}$ and $0^{\circ} < A < 90^{\circ}$, and $\cos B = -$ ଵ **Worked Example**
and 0° < A < 90°, and $\cos B = -\frac{4}{5}$, B is obtuse, find the value of $\sec(A - B)$ $\frac{4}{10}$ D is obtained find the value of $\frac{1}{5}$, *B* is obtuse, find the value of sec(*A* – *B*)

Given that $2\cos(x - 40)$ ° = $\sin(x - 50)$ °, show that tan $x = 3 \tan 50$ °

Double-angle formula allow you to halve the angle within a trig function. NOT IN FORMULAE BOOKLET

7.3) Double-angle formulae
\ngle formula allow you to halve the angle within a trig function. NOT IN FORMULAE BOOKLET
\n
$$
sin(2A) \equiv 2 \sin A \cos A
$$
\n
$$
cos(2A) \equiv cos^2 A - sin^2 A
$$
\n
$$
\equiv 2 cos^2 A - 1
$$
\n
$$
\equiv 1 - 2 sin^2 A
$$
\nFor tip: The way I remember what way
\nround these go is that the cos on the
\nRHS is 'attracted' to the cos on the LHS,
\nwhereas the sin is pushed away.
\n
$$
tan(2A) = \frac{2 tan A}{1 - tan^2 A}
$$
\nThese are all easily derivable by just setting $A = B$ in the compound angle formulae. e.g.
\n
$$
sin A cos A + cos A sin A
$$
\n
$$
= sin A cos A
$$
\n
$$
tan(2A) = sin A cos A
$$
\n
$$
tan(2A) = sin A cos A
$$
\n
$$
tan(2A) = sin A cos A
$$
\n
$$
tan(2A) = sin A cos A
$$
\n
$$
tan(2A) = sin A cos A
$$

These are all easily derivable by just setting $A = B$ in the compound angle formulae. e.g.

Use the double-angle formulae to write as a single trigonometric ratio: a) $\cos^2 50^\circ - \sin^2 50^\circ$ b) $2 \cos^2 \frac{2\pi}{9} - 1$ c) $1 - 2 \sin^2 30^\circ$ **Worked Ex**

So° – sin² 50° b) $2 \cos^2 \frac{2\pi}{9} - 1$ c) $1 - 2 \sin^2 30$ ° **Worked Example**
gle formulae to write as a single trigonometric ratio:
50° b) $2 \cos^2 \frac{2\pi}{9} - 1$ c) $1 - 2 \sin^2 30$ ° $\frac{36}{9} - 1$ c) $1 - 2 \sin^2 30^\circ$ **Worked Example**

te as a single trigonometric ratio:
 $- 1$ c) $1 - 2 \sin^2 30^\circ$

Use the double-angle formulae to write as a single trigonometric ratio: a) $\cos^2 2x - \sin^2 2x$ b) $4 \cos^2 3x - 2$ c) $3 - 6 \sin^2 4x$

Use the double-angle formulae to write as a single trigonometric ratio: a) $2 \sin 45^\circ \cos 45^\circ$ b) $4 \sin \frac{\pi}{12} \cos \frac{\pi}{12}$ c) $7 \sin 5x \cos 5x$

Use the double-angle formulae to write as a single trigonometric ratio: a) $\frac{2 \tan 30^{\circ}}{1-\tan^2 30^{\circ}}$ b) $\frac{2 \tan \frac{\pi}{12}}{1-\tan^2 \frac{\pi}{12}}$ c) $\frac{4 \tan 6}{1-\tan^2 6x}$

Page 40

Use the double-angle formulae to write as a single trigonometric ratio:

Given that $x = 2 \sin \theta$ and $y = 4 - 3\cos 2\theta$, eliminate θ and express y in terms of x.

Given that $\cos x = \frac{5}{8}$ and x is acute, find the exact value of (a) $\sin 2x$ (b) $\tan 2x$

Worked Example **Worked Example**
ae, evaluate:
 $-\cos\frac{\pi}{4}$)²

 $\overline{41}$

Using the double-angle formulae, evaluate: a) $\left(\sin\frac{\pi}{3} + \cos\frac{\pi}{3}\right)^2$ b) $\left(\sin\frac{\pi}{4} - \cos\frac{\pi}{4}\right)^2$ **Worked**

e double-angle formulae, evaluate:
 $+\cos\frac{\pi}{3}\big)^2$ b) $\left(\sin\frac{\pi}{4} - \cos\frac{\pi}{4}\right)^2$ ² b) $\left(\sin{\frac{\pi}{4}} - \cos{\frac{\pi}{4}}\right)^2$ π ² $\overline{\mathbf{c}}$

ଷ

7.4) Solving trigonometric equations

Solve in the interval $0 \le x \le 360^{\circ}$: $8 \sin(\theta + 60^{\circ}) = 4\sqrt{2} \cos \theta$

Solve in the interval $0 \le x \le 360^{\circ}$: $8 \cos(\theta - 60^{\circ}) = 4\sqrt{2} \sin \theta$

Worked Example **Solve in the interval** $0 \le x \le 360^\circ$ **:** $3 \cos 2x + \cos x + 2 = 0$
Solve in the interval $0 \le x \le 360^\circ$: $3 \cos 2x + \cos x + 2 = 0$

Solve in the interval $0 \le x \le 360^{\circ}$: 4 sin 2x - 5 cos x = 0

Solve in the interval $0 \le y \le 2\pi$ **:** $3 \tan 2y \tan y = 2$
Solve in the interval $0 \le y \le 2\pi$: $3 \tan 2y \tan y = 2$

-
- **a)** Show that $cos(3A) = 4 cos^3 A 3 cos A$.
b) Hence or otherwise, solve, for $0 < \theta < 2\pi$, the equation $12 cos \theta 16 cos^3 \theta 2\sqrt{3} = 0$ $\theta - 2\sqrt{3} = 0$

7.5) Simplifying $a \cos x \pm b \sin x$

Here's a sketch of $y = 3 \sin x + 4 \cos x$.

It's a sin graph that seems to be translated on the x -axis and stretched on the y axis. This suggests we can represent it as $y = R \sin(x + \alpha)$, where α is the horizontal translation and R the stretch on the y -axis.

Notes

Put $3 \sin x + 4 \cos x$ in the form $R \sin(x + \alpha)$ giving α in degrees to 1dp.

STEP 1: Expanding: $R \sin(x + \alpha) = R \sin x \cos \alpha + R \cos x \sin \alpha$

STEP 2: Comparing coefficients: $R \cos \alpha = 3$ $R \sin \alpha = 4$

STEP 3: Using the fact that $R^2 \sin^2 \alpha + R^2 \cos^2 \alpha = R^2$: $R = \sqrt{3^2 + 4^2} = 5$

STEP 4: Using the fact that
$$
\frac{R \sin \alpha}{R \cos \alpha} = \tan \alpha
$$
:
\n $\tan \alpha = \frac{4}{3}$
\n $\alpha = 53.1^{\circ}$

If R cos $\alpha = 3$ and R sin $\alpha = 4$ then $R^2 \cos^2 \alpha = 3^2$ and $R^2 \sin^2 \alpha = 4^2$. $R^2 \sin^2 \alpha + R^2 \cos^2 \alpha = 3^2 + 4^2$ $R^2(\sin^2 \alpha + \cos^2 \alpha) = 3^2 + 4^2$ $R^2 = 3^2 + 4^2$ $R = \sqrt{3^2 + 4^2}$ (You can write just the last line in exams)

STEP 5: Put values back into original expression. $3 \sin x + 4 \cos x \equiv 5 \sin(x + 53.1^{\circ})$

591a: Write $a\cos x + b\sin x$ in the form $R\cos(x + \alpha)$

Write $9\sin\theta + 3\cos\theta$ in the form $R\sin(\theta + \alpha)$ leaving R as an exact value and α in degrees correct to 1 decimal place.

You may use these formulae:

 $\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$ $\cos\left(A\pm B\right)=\cos A\cos B\mp\sin A\sin B$

Express 5 sin $x + 12 \cos x$ in the form: $R \cos(x - \alpha)$, $R > 0$, $0 < \alpha < 90^{\circ}$

Express 5 sin $x + 12 \cos x$ in the form: $R \sin(x - \alpha)$, $R > 0$, $0 < \alpha < 180^{\circ}$

Express 5 sin $x + 12 \cos x$ in the form: $R \cos(x + \alpha)$, $R > 0$, $0 < \alpha < 180^{\circ}$

Worked Example Solve in the interval $0 \le \theta < 180^{\circ}$: $5 \sin 3\theta - 12 \cos 3\theta = 1$

7.6) Proving trigonometric identities

$$
\cot 2\theta \equiv \frac{\cot \theta - \tan \theta}{2}
$$

Prove that:

$$
\frac{-\sin 2\theta}{\cos 2\theta - 1} \equiv \cot \theta
$$

Prove that:

 $\cot 2x - \csc 2x \equiv -\tan x$

Worked Example **Worked Example**
 $\frac{\cos x + \sin x}{\cos x - \sin x}$ Worked Example
 $\frac{\cos x + \sin x}{\cos x - \sin x}$

Prove, starting with the left-hand side:

$$
\tan 2x + \sec 2x \equiv \frac{\cos x + \sin x}{\cos x - \sin x}
$$

Show that:

$$
\sin^4 \theta = \frac{3}{8} - \frac{1}{2} \cos 2\theta + \frac{1}{8} \cos 4\theta
$$

7.7) Modelling with trigonometric functions

Worked Example **Worked Example**

The modelled by the equation
 $P = 14.5 - 0.2 \sin(t - 3)$

and, and angles are in radians. Find:

Freaches a maximum pressure

pin pressure would be exactly 14.42 psi

The cabin pressure, P (psi) on an aeroplane at cruising altitude can be modelled by the equation
 $P = 14.5 - 0.2 \sin(t - 3)$ a) The maximum and minimum cabin pressure b) The time after reaching cruising altitude that the cabin first reaches a maximum pressure **COVATE:** The cabin pressure, P (psi) on an aeroplane at cruising altitude can be modelled by the equal where t is the time in hours since cruising altitude was first reached, and angles are in radial The maximum and mi **Worked Example**

The cabin pressure, P (psi) on an aeroplane at cruising altitude can be modelled by the equation

where *t* is the time in hours since cruising altitude was first reached, and angles are in radians. Fi

where t is the time in hours since cruising altitude was first reached, and angles are in radians. Find:
a) The maximum and minimum cabin pressure

-
-
-
-

a) Express 7 cos θ − 5 sin θ in the form $R \cos(\theta + \alpha)$, where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$. State the exact value of R and give α to four decimal plach b) State the maximum value of 7 cos θ − 5 sin θ and the π Ctate the evactualus of D and give extern $\frac{\pi}{2}$. State the exact value of R and give α to four decimal places. **b)** State the maximum value of 7 cos θ − 5 sin θ in the form $R \cos(\theta + \alpha)$, where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$. State the exact value of R and give α to four decimal plack by State the maximum value of 7 cos θ − **Worked Example**
 > 0 and $0 < \alpha < \frac{\pi}{2}$. State the exact value of *R* and give α to four decimal plac

of θ , for $0 < \theta < 2\pi$ at which this maximum occurs.

modelled by the equation
 $H = 12 - 7 \cos(\frac{\pi t}{4}) + 5 \sin(\frac{\pi t}{$ **Example**
 $\frac{F}{\pi}$. State the exact value of *R* and give *a* to four decimal places.
 π at which this maximum occurs.

uation
 $)+ 5 \sin(\frac{\pi t}{4})$

turning.

when this maximum first occurs **Calculate the maximum value of** $T \cos \theta - 5 \sin \theta$ **in the form** $R \cos(\theta + \alpha)$ **, where** $R > 0$ **and** $0 < \alpha < \frac{\pi}{2}$ **. State the exact value of** R **and give** α **to four decimal plant by the value of** θ **, for** $0 < \theta < 2\pi$ **at which this a)** Express 7 $\cos \theta - 5 \sin \theta$ in the form $R \cos(\theta + \alpha)$, where $R > 0$ and b) State the maximum value of 7 $\cos \theta - 5 \sin \theta$ and the value of θ , for The height *H* above ground of a passenger on a Ferris wheel is modelled *H*

The height H above ground of a passenger on a Ferris wheel is modelled by the equation

$$
H = 12 - 7\cos(\frac{\pi t}{4}) + 5\sin(\frac{\pi t}{4})
$$

where H is measured in metres, and t is the time in minutes after the wheel starts turning.

Your Turn

a) Express 9 cos $\theta - 2 \sin \theta$ in the form $R \cos(\theta + \alpha)$, where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$. State the exact value of R and give α to four decimal plack by State the maximum value of 9 cos $\theta - 2 \sin \theta$ and the value of $\$ π Chatatheorem at value of D and dive s to f $\frac{\pi}{2}$. State the exact value of R and give α to four decimal places. **b**) State the maximum value of 9 cos θ − 2 sin θ in the form $R \cos(\theta + \alpha)$, where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$. State the exact value of R and give α to four decimal plack by State the maximum value of 9 cos θ − **Your Turn**
 $R > 0$ and $0 < \alpha < \frac{\pi}{2}$. State the exact value of R and give α to four decimal place of θ , for $0 < \theta < 2\pi$ at which this maximum occurs.

modelled by the equation
 $H = 10 - 9 \cos(\frac{\pi t}{5}) + 2 \sin(\frac{\pi t}{5})$

e **Turn**
 $\frac{\pi}{2}$. State the exact value of *R* and give *α* to four decimal places.
 2π at which this maximum occurs.

quation
 $) + 2 \sin(\frac{\pi t}{5})$

turning.

when this maximum first occurs **COULT TUTN**
 CALCULATE TO ALCULATE TO ALCULATE THE MAXIMUS CONDUCT TO ALCULATE THE MAXIMUS CONDUCT TO A CONDUCT THE MAXIMUM VALUE OF θ **,** ϵ **and** θ **or** ϵ **and the value of** θ **, ror** θ **or** ϵ **and** θ **and the v Solution**
 Nour Turn

a) Express 9 cos θ – 2 sin θ in the form $R \cos(\theta + \alpha)$, where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$. State the exact

b) State the maximum value of 9 cos θ – 2 sin θ and the value of θ , for $0 < \theta$

The height H above ground of a passenger on a Ferris wheel is modelled by the equation

$$
H = 10 - 9\cos(\frac{\pi t}{5}) + 2\sin(\frac{\pi t}{5})
$$

where H is measured in metres, and t is the time in minutes after the wheel starts turning.

-
-

Example 12 and give a to four decimal places.
 $\frac{\pi}{\pi}$ at which this maximum occurs.

uation
 π at which this maximum occurs.

uation
 $\frac{\pi t}{5}$

turning.

when this maximum first occurs

a) $R = \sqrt{85}$, $\alpha = 0.2187$ *m* at which this maximum occurs.

uation
 $+ 2 \sin(\frac{\pi t}{5})$

turning.

when this maximum first occurs

a) $R = \sqrt{85}$, $\alpha = 0.2187$

b) Maximum = $\sqrt{85}$ when $\theta = 6.06$

c) Maximum $H = 19.22m$ at $t = 4.65$

d) 20 minutes valuation

+ 2 sin($\frac{\pi t}{5}$)

turning.

when this maximum first occurs

a) $R = \sqrt{85}$, $\alpha = 0.2187$

b) Maximum = $\sqrt{85}$ when $\theta = 6.06$

c) Maximum $H = 19.22m$ at $t = 4.65$

d) 20 minutes d) 20 minutes

a) Express 1.5 sin θ – 2 cos θ in the form $R \sin(\theta - \alpha)$, where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$. State the exact value of R and give α to four decimal plane b) State the maximum value of 1.5 sin θ – 2 cos θ and $\frac{\pi}{\pi}$ State the event value of R and give s to f $\frac{\pi}{2}$. State the exact value of R and give α to four decimal places. **b)** State the maximum value of1.5 sin θ – 2 cos θ in the form $R \sin(\theta - \alpha)$, where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$. State the exact value of R and give α to four decimal plits the maximum value of1.5 sin θ – 2 cos **Example**
 $0 < \alpha < \frac{\pi}{2}$. State the exact value of *R* and give α to four decimal places.
 $< \theta < \pi$ at which this maximum occurs.

tion
 $2\pi t$
 $\left(\frac{2\pi t}{25}\right) - 2\cos\left(\frac{2\pi t}{25}\right)$, $0 \le t < 12$

the of *t* when this **Dle**

ze the exact value of *R* and give α to four decimal places.

sich this maximum occurs.
 $2\pi t$
 2π

is maximum occurs

by this model, to be 7 metres. **CALCUTE THE MANUTE CONDUM CONTROL CONDUM CONTROLLY**

(a) Express 1.5 sin θ – 2 cos θ in the form $R \sin(\theta - \alpha)$, where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$ state the exact value of R and give α to four deciment by the heigh **a)** Express 1.5 sin θ – 2 cos θ in the form $R \sin(\theta - \alpha)$, where $R > 0$ and $0 < \alpha < \frac{\pi}{2}$ State the exact value of R and give α to four decin
b) State the maximum value of 1.5 sin θ – 2 cos θ and the valu

The height H of sea water on a particular day can be modelled by the equation

Worked Example
\nwhere
$$
R > 0
$$
 and $0 < \alpha < \frac{\pi}{2}$. State the exact value of R and give α to four deci
\ne value of θ , for $0 < \theta < \pi$ at which this maximum occurs.
\ndelled by the equation
\n
$$
H = 8 + 1.5 \sin \left(\frac{2\pi t}{25}\right) - 2 \cos \left(\frac{2\pi t}{25}\right), 0 \le t < 12
$$
\nours after midnight.
\nmodel, and the value of t when this maximum occurs
\nheight of sea water is predicted, by this model, to be 7 metres.

where H is measured in metres, and t is the number of hours after midnight.

Extract from Formulae book

Trigonometric identities

 $\tan \theta \approx \theta$

where θ is measured in radians

Past Paper Questions

 $13. (a)$ Show that

 $\csc 2x + \cot 2x \equiv \cot x$, $x \neq 90n^{\circ}$, $n \in \mathbb{Z}$

(b) Hence, or otherwise, solve, for $0 \le \theta < 180^{\circ}$,

 $\csc(4\theta + 10^{\circ}) + \cot(4\theta + 10^{\circ}) = \sqrt{3}$

You must show your working.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

 (5)

 (5)

 $= \frac{\cos x}{\sin x} = \cot x$

 $=\frac{1+2\cos^2 x-1}{2}$

 $\sin 2x$

 $=\frac{1+\cos 2x}{\cdot}$

 $\csc 2x + \cot 2x \equiv \cot x$, $x \neq 90n^{\circ}$, $n \in \phi$

 $\csc 2x + \cot 2x = \frac{1}{\sin 2x} + \frac{\cos 2x}{\sin 2x}$

 $13(a)$

 $2\sin x \cos x$ $2\sin x \cos x$

 $rac{2\cos^2 x}{1}$

 (5)

 $AI*$ 2.1

 $A1$ TIP

 $M1$ 2.1

M1

 $M1$ $1.2\,$

 $L1b$

Summary of Key Points

Summary of key points

- 1 The addition (or compound-angle) formulae are:
	- \cdot sin $(A + B) \equiv \sin A \cos B + \cos A \sin B$
	- \cdot cos $(A + B) \equiv \cos A \cos B \sin A \sin B$

•
$$
\tan(A + B) \equiv \frac{\tan A + \tan B}{1 - \tan A \tan B}
$$

- 2 The double-angle formulae are:
	- \cdot sin $2A = 2 \sin A \cos A$
	- $\cos 2A \equiv \cos^2 A \sin^2 A \equiv 2 \cos^2 A 1 \equiv 1 2 \sin^2 A$

$$
\cdot \tan 2A \equiv \frac{2 \tan A}{1 - \tan^2 A}
$$

- 3 For positive values of a and b ,
	- \cdot a sin $x \pm b$ cos x can be expressed in the form R sin ($x \pm \alpha$)
	- \cdot a cos $x \pm b$ sin x can be expressed in the form R cos ($x \mp \alpha$)

with $R > 0$ and $0 < \alpha < 90^{\circ}$ (or $\frac{\pi}{2}$) where $R \cos \alpha = a$ and $R \sin \alpha = b$ and $R = \sqrt{a^2 + b^2}$.

$$
\sin (A - B) \equiv \sin A \cos B - \cos A \sin B
$$

$$
\cos (A - B) \equiv \cos A \cos B + \sin A \sin B
$$

$$
\tan (A - B) \equiv \frac{\tan A - \tan B}{1 + \tan A \tan B}
$$

T.192 mixed ex, P.57 BSG