

Year 13 **Year 13
Pure Mathematics
LO Numerical Methods** P2 10 Numerical Methods

HGS Maths Dr Frost Course

Class: ____________________________________

Contents

10.1) Locating roots 10.2) Iteration 10.3) The Newton-Raphson method 10.4) Applications to modelling

Extract from Formulae booklet Past Paper Practice Summary

Prior knowledge check

Why do we need numerical methods?

Finding the root of a function $f(x)$ is to: **solve the equation** $f(x) = 0$ (i.e. the inputs such that the output of the function is 0)

However, for some functions, the 'exact' root is either complicated and difficult to calculate:

$$
x^3 + 2x^2 - 3x + 4 = 0
$$

$$
x = \frac{1}{3} \left(-2 - \frac{13}{\sqrt[3]{89 - 6\sqrt{159}}} - \sqrt[3]{89 - 6\sqrt{159}} \right)
$$

or there's no 'algebraic' expression at all! (involving roots, logs, sin, cos, etc.)

 $x - \cos(x) = 0$

Exact solution not expressible \otimes

But there are a variety of 'numerical methods' which get progressively better solutions to an equation in the form $f(x) = 0$. You have already seen 'iteration' at GCSE as one such method.

…and no sign change doesn't mean there isn't a root

Beware! Just because there isn't a sign change, doesn't mean there's no root in that interval.

The sign change method fails to detect a root if there were an even number of roots in that interval.

Explain why there are no real roots to $f(x) = \frac{1}{x-2}$ between $x = 1$ and z $x-2$ between $x=1$ and

Using the same axes, sketch the graphs of

- $y = e^x$ and $y = \frac{1}{x}$ ଵ
- \mathcal{X} **Explore Using the same axes, sketch the graphs of**
 Worked Example
 $y = e^x$ and $y = \frac{1}{x}$

a) Explain how your diagram shows that the function $f(x) = e^x - \frac{1}{x}$ has only one root

b) Show that this root lies in the i 1 based when $\frac{1}{2}$ $\frac{1}{x}$ has only one root **Solution** Using the same axes, sketch the graphs of
 $y = e^x$ and $y = \frac{1}{x}$

a) Explain how your diagram shows that the function $f(x) = e^x - \frac{1}{x}$ has only one root

b) Show that this root lies in the interval 0.5 < $x <$ **Complement Worked Example Using the same axes, sketch the graphs of**
 $y = e^x$ and $y = \frac{1}{x}$

a) Explain how your diagram shows that the function $f(x) = e^x - \frac{1}{x}$ has

b) Show that this root lies in the interval 0.5 <
-
-

Why does this method work?

Recall we put in the form $x = g(x)$: in this case $x = \sqrt{x+1}$ is one possible rearrangement. We can then use the recurrence $x_{n+1} = \sqrt{x_n + 1}$. Why does this recurrence work?

Cobweb Diagrams

And when iteration fails…

Solve $x^2 - x - 1 = 0$

But again, we could have rearranged differently! $x = x^2 - 1$ Therefore we use the recurrence $x_{n+1} = x_n^2 - 1$. What happens this time?

Worked Example Worked Example
 $f(x) = x^2 - 5x - 3$

$$
f(x) = x^2 - 5x - 3
$$

i)
$$
x = \frac{x^2 - 3}{5}
$$
 ii) $x = \sqrt{5x + 3}$ iii) $x = 5 + \frac{3}{x}$

Solution
 Worked Example
 a) Show that $f(x) = 0$ can be written as:
 i) $x = \frac{x^2 - 3}{5}$ **ii**) $x = \sqrt{5x + 3}$ **iii**) $x = 5 + \frac{3}{x}$
 b) Starting with $x_0 = 3$ use each iterative

formula to find a root of the equat b) Starting with $x_0 = 3$ use each iterative **Worked Example**
 $f(x) = 0$ can be written as:
 $\text{if } x = \sqrt{5x + 3}$ iii) $x = 5 + \frac{3}{x}$
 $\text{if } x_0 = 3 \text{ use each iterative}$
 $\text{find a root of the equation}$
 $\text{ounding your answers to 3}$ **b)** Show that $f(x) = 0$ can be written as:
 $f(x) = x^2 - 5x - 3$
 $f(x) = \frac{x^2-3}{5}$ ii) $x = \sqrt{5x + 3}$ iii) $x = 5 + \frac{3}{x}$

b) Starting with $x_0 = 3$ use each iterative

for formula to find a root of the equation **Worked**

Show that $f(x) = 0$ can be written as:
 $c = \frac{x^2-3}{5}$ ii) $x = \sqrt{5x+3}$ iii) $x = 5 + \frac{3}{x}$

Starting with $x_0 = 3$ use each iterative

formula to find a root of the equation
 $f(x) = 0$, rounding your answers to 3 decimal places

$$
f(x) = x^3 + 4x^2 + 3x - 12
$$

(a) Show that the equation can be written as

Worked Example
\n
$$
f(x) = x^3 + 4x^2 + 3x - 12
$$
\n
$$
x = \sqrt{\frac{3(4-x)}{4+x}}, x \neq -4
$$
\n2.
\n
$$
x_{n+1} = \sqrt{\frac{4(3-x_n)}{3+x_n}}, n \ge 0, x_0 = 1
$$

$$
x_{n+1} = \sqrt{\frac{4(3-x_n)}{3+x_n}}, n \ge 0, x_0 = 1
$$

Solution Solution CALC

(a) Show that the equation can be written as
 $x = \sqrt{\frac{3(4-x)}{4+x}}$, $x \ne -4$

The equation $f(x) = 0$ has a single root between 1 and 2.

(b) Use the iterative formula
 $x_{n+1} = \sqrt{\frac{4(3-x_n)}{3+x_n}}$, **d Example**
 $x^2 + 3x - 12$

 $\frac{x}{y}$, $x \neq -4$

, $n \ge 0, x_0 = 1$

al places.

t $\alpha = 1.253$ (3 dp) to calculate the values of x_1 , x_2 and x_3 , giving your answers to 2 decimal places.
(c) The root of $f(x) = 0$ is α . By choosing a suitable interval, prove that $\alpha = 1.253$ (3 dp) **Worked Example**

(a) Show that the equation can be written as
 $f(x) = x^3 + 4x^2 + 3x - 12$
 $x = \sqrt{\frac{3(4-x)}{4+x}}$, $x \ne -4$

The equation $f(x) = 0$ has a single root between 1 and 2.

(b) Use the iterative formula
 $x_{n+1} = \sqrt{\frac{4$

Your Turn

Worked Example
Use the graph of $y = x$ and $y = \frac{3}{x-1}$ to solve the equation
 $x^2 - x - 3 = 0$
using the recurrence relation:
 $x_{n+1} = \frac{3}{x-1}$, $x_0 = -4.5$ **Worked Example**
ation
 $x^2 - x - 3 = 0$
= $\frac{3}{x_n - 1}$, $x_0 = -4.5$ **orked Example**

ion
 $-x-3=0$
 $\frac{3}{x_n-1}$, $x_0 = -4.5$ 3_{to} colverse equation $\frac{1}{x-1}$ to solve the equation using the recurrence relation: $3 \frac{1}{10}$ $x_{n+1} = \frac{1}{x_{n+1}}$, $x_0 = -4.5$ -2 -À

Your Turn

Page 29 T.280: 10B Qs 3+, P.82: 10.2 Qs 4+

Your Turn

10.3) The Newton-Raphson method

The Newton-Raphson Process

When does Newton-Raphson fail?

$$
x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}
$$

If the starting value x_0 was the stationary **point**, then $f'(x_0) = 0$, resulting in a division by 0 in the above formula.

Graphically, it is because the tangent will never reach the x -axis.

 $y=\frac{y}{\sqrt{1-\frac{y^2}{c^2}}}$ and $y=\frac{y^2}{c^2}$ **EXECUTE:**

If the starting value x_0 was the starting value x_0 was the starting in

point, then $f'(x_0) = 0$, resulting in

division by 0 in the above formula.

Graphically, it is because the tanger

never reach the $\overrightarrow{x_2}$ \overrightarrow{x} diverge. Newton-Raphson also suffers from the same drawbacks as solving by iteration, in that it's possible for the values of x_i to $\qquad \qquad \vert$

> In this example, the x_i oscillate either side of 0, but gradually getting further away from $\alpha = 0$.

 \sim

10.4) Applications to modelling

The price of a car in £s, x years after purchase, is modelled by the function
 $f(x) = 5000 (0.58)^x - 100 \sin x$.

-
-
- **Worked Example**

s modelled by the function
 $f(x) = 5000 (0.58)^x 100 \sin x$, $x > 0$

arest hundred £s, of the car 5 years after purchase.

8.

the Newton-Raphson method once to $f(x)$ to obtain a second approximation for the **Worked Example**

The price of a car in £s, x years after purchase, is modelled by the function
 $f(x) = 5000 (0.58)^x - 100 \sin x$, $x > 0$

(a) Use the model to find the value, to the nearest hundred £s, of the car 5 years after **Wo**
The price of a car in £s, *x* years after purchase, is modelled by the

(a) Use the model to find the value, to the nearest hundred £s, c

(b) Show that $f(x)$ has a root between 7 and 8.

(c) Taking 7.5 as a first ap **CONDUM Worked Example**

The price of a car in £5, x years after purchase, is modelled by the function

(a) Use the model to find the value, to the nearest hundred £5, of the car 5 years after purchase.

(b) Show that $f(x$ when the value of the car is zero. Give your answer to 3 decimal places. **Worked Example**

The price of a car in £5, *x* years after purchase, is modelled by the function
 $f(x) = 5000 (0.58)^x - 100 \sin x$, $x > 0$

(b) Show that $f(x)$ has a root between 7 and 8.

(c) Taking 7.5 as a first approximati
-

Numerical Methods

The trapezium rule:
$$
\int_a^b y \, dx \approx \frac{1}{2} h \{ (y_0 + y_n) + 2 (y_1 + y_2 + \dots + y_{n-1}) \}, \text{ where } h = \frac{b-a}{n}
$$

The Newton-Raphson iteration for solving $f(x) = 0 : x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Past Paper Questions

 $\widetilde{\mathfrak{p}^0} \lambda = x \; \widetilde{\mathfrak{p}^0} \, x \Rightarrow \frac{\lambda}{1} \; \frac{dx}{dt} = \widetilde{\mathfrak{p}^0} \, x + 1$

Part Working or answer an examiner might Mark Note

 $\lambda = x_n \Rightarrow \overline{w} \lambda = x \overline{w}$

M1 This mark is given for a method using
implicit differentiation This mark is for a method to find the x-coordinate of the turning point of ${\cal C}$ by taking logarithms

WI

Summary of Key Points

Summary of key points

- **1** If the function $f(x)$ is continuous on the interval [a , b] and $f(a)$ and $f(b)$ have opposite signs, then $f(x)$ has at least one root, x, which satisfies $a < x < b$.
- **2** To solve an equation of the form $f(x) = 0$ by an iterative method, rearrange $f(x) = 0$ into the form $x = g(x)$ and use the iterative formula $x_{n+1} = g(x_n)$.
- **3** The Newton-Raphson formula for approximating the roots of a function $f(x)$ is

$$
x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}
$$