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Prior knowledge check

Prior knowledge check ‘"I»tmﬂ

1 f(x) =x%-6x+ 10. Evaluate:

- a f(1.5) b f(-0.2) « GCSE Mathematics
™ 2 Find f'(x) given that:
-~ 5

a f(x) =3/x +4x% - = « Year 1, Chapter 12

X

b f(x)=5In(x+2)+7e~ « Section9.3

¢ f(x) =xsinx—-4cosx « Section 9.4
.3 Giventhatu,,,=u, e 1 and that u, =1,
' e 0
= find the values of u,, u, and U, « Section 3.7
e

R L S S
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10.1) Locating roots
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Why do we need numerical methods?

Finding the root of a function f(x) is to: solve the equation f(x) = 0
(i.e. the inputs such that the output of the function is 0)

However, for some functions, the ‘exact’ root is either complicated and difficult to calculate:

1 13
x3+2x*-3x+4=0 # x=—(—2—3 —3\/89—6\/159)
3 /89 — 6+/159 )

or there’s no ‘algebraic’ expression at all! (involving roots, logs, sin, cos, etc.)

x—cos(x)=0 - Exact solution not expressible ®
: c0‘5® But there are a variety of ‘numerical
9§ % methods’ which get progressively

better solutionsto an equationin

the form f(x) = 0.
You have already seen ‘iteration’ at
GCSE as one such method.

-10+4
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Proving a solution lies in a range

Show that f(x) = e* + 2x — 3 has aroot betweenx = 0.5and x = 0.6

101

f£(0.5) =-0.351
f(0.6) =0.022 ...
There is a change in sign, and
f(x) is continuous, so root must

:/1 A lie between 0.5 and 0.6

If the y value goes

(06, 0022) from negative to
positive or vice
. versa, then clearly

the y values must

A J

pass 0 somewhere
in between.

(0.5,—0.351)
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...but only if the function is continuous

Stupid Steve says:

When f(x) = %, then

f(=1)=-1and f(1) = 1.
There is a change in sign
G{ ,.3 therefore f(x) has a root in

[* 34 the range [-1, 1]
°o0

Why is Steve wrong?

A function is continuous if the line does not
(1,1) ‘jlump’. A root is only guaranteed with a sign
change if the function is continuous, as
. X otherwise the line can skip past O (in this case
due to a vertical asymptote.

(-1,-1)
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...and no sign change doesn’t mean there isn’t a root

ropt

Beware! Just because there isn’t a
sign change, doesn’t mean there’s
no root in that interval.

v
o

The sign change method fails to
detect a root if there were an even
number of roots in that interval.
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Worked Example

Explain why there are no real roots to f(x) = x% betweenx = landx =3
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Worked Example

Using the same axes, sketch the graphs of
y=e*andy = i

a) Explain how your diagram shows that the function f(x) = e* — % has only one root

b) Show that this root lies in the interval 0.5 < x < 0.6

c) Show that therootis 0.567 to 3 decimal places
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10.2) lteration
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Why does this method work?

2 —
Solve x* —x—1=0
Recall we put in the form x = g(x): in this case x = v/x + 1 is one possible rearrangement.
We can then use the recurrence x,,.1 = +/x,, + 1 . Why does this recurrence work?

i
This is called a staircase diagram due
to its shape. We can see that we're

converging towards the root a.
=

Finding the solution to

This value of x is x =+x+ 1isthe same
the root of the as sketchingy = x and

original equation. y = \/m and seeing
the point at which they

This gives x; = 1.414 ...

— S FO.. " S—
AN

This is then fed back into X1 a =2 L inters_ect.

X, + 1 for the next 0 |
iteration, i.e. the y value When x, = 1, we would
becomes the new x value! — We can repeat this process ~ — find \/xo + 1. Thisis the y
This is equivalent to using x; = 1.414 ... to get x, valueonthey =vx +1
moving to the line y = x. and so on. graph.
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Cobweb Diagrams

Solve x2—x—1=0

, 1
We could also have rearranged differently to x = ==
Therefore we use the recurrence x,,,; = ﬁ . What happens this time?

pEEw R
=

--llll.'lIllll‘lllllll-.ll'llll..ll'llll..,lllll EEENENEEEEER

This is unsurprisingly called a cobweb
diagram. Again we can see that we're
successfully converging towards the root «.

Page 16




And when iteration fails...

Solve x2—x—1=0

But again, we could have rearranged differently! x = x? — 1
Therefore we use the recurrence x,,.; = x2 — 1. What happens this time?

The root approximations x; are getting
154 further away from the true root «, not
closer, so our iterative method failed. ®
rlnllln---uunl
10+ .
>T :
A --.-..I...I...---.F-...II-I-: e
1 ; 1
p— e B a ! ! X
- 1 2 X0 3 L
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Notes
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Worked Example

f(x) =x*2-5x—-3
a) Show that f(x) = 0 can be written as:
2_
x="= i)x=+v5x+3 i)x=5+>
b) Starting with x, = 3 use each iterative
formula to find a root of the equation

f(x) = 0, rounding your answers to 3
decimal places
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Worked Example

f(x) =e*2+4+x-5
a) Show that f(x) = 0 can be written as:
x=In(5—-x)+2, x <5
The root of f(x) = 0is a.
The iterative formula
Xpne1 =In(5 —xp) + 2, Xo =3

is used to find an approximate value for a
b) Calculate the values of x4, x, and x3 to four

decimal places.
c) By choosing a suitable interval, show that

a = 2.792 correct to 3 decimal places.
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Worked Example

fxX) =x3+4x2 +3x—12

’3(4—35)
XxX= |——,x* —4
4+ x

The equation f(x) = 0 has a single root between 1 and 2.
(b) Use the iterative formula

(a) Show that the equation can be written as

4(3—x7)
3+x,

Xpi1 = ,n=0,x0=1

to calculate the values of xq, x, and x3, giving your answers to 2 decimal places.
(c) Theroot of f(x) = 0is a. By choosing a suitable interval, prove that « = 1.253 (3 dp)

Page 23 1.280: 10B Qs 1,2, P82: 10.2 Qs 1-3




Worked Example

Use the graph of y = x and y = Vx + 3 to solve the equation
x?—x—-3=0

Xn+1 =/ Xp +3,x9 =1

using the recurrence relation:

L)
X,

.///l
//

y
y
V4

N
)
N\

/
/s

’ 4
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P
P
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/

// 4
4
/
7
V 4
J
F 4
V4
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Your Turn

Use the graph of y = x and y = Vx + 1 to solve the equation
x2—x—1=0

Xn+1 =\ Xn + 1,x0 =1

using the recurrence relation:
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Worked Example

3 ,

Use the graphof y = xandy = ——to solve the equation
x2—x—-3=0

using the recurrence relation:

X =—— ,xy = —4.5
n+1 n_]. 0

/
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Your Turn

Use the graphof y = xandy = x—il to solve the equation
x2—x—-1=0
using the recurrence relation:
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Worked Example

Use the graph of y = x and y = x? — 3 to solve the equation
x2—x—-3=0
using the recurrence relation:
Xn+1 = Xn — 3,% = 3

_2 0
.;;',,4»""/’:
«:,-F';/':/z’.
‘:’;:f’,:):
_ ,’{}.{"j:,’
—‘E O j
{;;}_4»'.’.;«"
| f:;:j'.':;:
“-“ '_«,:;&w/-
‘! ;‘:',/,z,
.1):).’.1.‘.1/‘*..
[’;:;:-6 1
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Your Turn

Use the graph of y = x and y = x? — 1 to solve the equation
x2—x—-1=0
using the recurrence relation:
Xpep = X2 —1,x9 = 2
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10.3) The Newton-Raphson method
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The Newton-Raphson Process

(also known as Newton’s method)

We wish to find the root a.
Suppose we start with the indicated

¥ approximation of the root, x,,.
T Clearly this is well off the mark!
X
A seemingly sensible thing to do is to “~

follow the direction of the line, i.e.

use the gradient of the tangent.
If the line was reasonably straight, the point the
tangent hits the x-axis would be close to the root.

We can keep repeating this

process to (hopefully) get
increasingly accurate
approximations.

Can you come up with a formula
for x,,41 in terms of x,,?

> X
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The Newton-Raphson Process

Using Year 1 coordinate geometry:

y_f(xn) = f’(xn)(x_xn)

But we’re interested when
X =Xpy1andy =0
_f(xn) = f’ (xn) (xn+1 - xn)

which rearranges to give:

Newton-Raphson Process:

f(xn)

Xn+1 = xn_f;(x )
n

> X

xn+1 Xn
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When does Newton-Raphson fail?

‘ i@
n+1 1 ff[:In)

If the starting value xy was the stationary
point, then f'(x,) = 0, resulting in a
division by 0 in the above formula.

tangent
: Graphically, it is because the tangent will
x'o > X never reach the x-axis.
y = X
y V1 + x? Newton-Raphson also suffers from the

4 same drawbacks as solving by iteration,
in that it’s possible for the values of x; to

X1

%2* X diverge.

In this example, the x; oscillate either
side of O, but gradually getting further
away from a = 0.
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Worked example

Your turn

Using the Newton-Raphson process, state the

recurrence relation for the following functions:

flx)=x*-3

g(x) = secx

h(x) =x*+x+3

Using the Newton-Raphson process, state the
recurrence relation for the following functions:

flx) =x3-2

g(x) =tanx

h(x)=x?—-x—-1
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Worked example Your turn

Using three iterations of the Newton-Raphson Using three iterations of the Newton-Raphson
process, starting with x, = 0.5, process, starting with xo = 0.5,
solve the equation solve the equation

X = sinx X = COSX
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Worked example

Your turn

1

f(x) =§x4—x2 +3x—1
The equation f(x) = 0 has aroot «a in the interval
[—2,-3]
Taking —2.5 as a first approximation to a, apply the
Newton-Raphson process once to f(x) to obtain a second
approximation to «.
Give your answer to 2 decimal places.

Pag

1
g(x)=§x4—x3+x—3

The equation g(x) = 0 has aroot f in the interval
[—2,-1]

Taking —1.5 as a first approximation to 3, apply the
Newton-Raphson process once to g(x) to obtain a second
approximation to £.

Give your answer to 2 decimal places.




Worked example Your turn
3 11
f(x) = 11x? ) g(x) = 3x? -

The equation f(x) = 0 has aroot a in the interval [0, 1]
Taking 0.4 as a first approximation to «, apply the

Newton-Raphson process once to f(x) to obtain a second
approximation to «.

Give your answer to 3 decimal places.

Pag

The equation g(x) = 0 has aroot § in the interval [1, 2]
Taking 1.4 as a first approximation to 3, apply the
Newton-Raphson process once to g(x) to obtain a second
approximation to £.

Give your answer to 3 decimal places.




Worked example Your turn
f(x) =x*—-5x+8 f(x)=x*+7x+8
State why xy, = 2.5 is not suitable to use as afirst | State why x, = —3.5 is not suitable to use as a first
approximation to the roots of f(x) when applying | approximation to the roots of f(x) when applying
the Newton-Raphson method. the Newton-Raphson method.
Pagp 41 T.284: 10C al Qs, P.84: 10.3 all Qs




10.4) Applications to modelling
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Notes
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Worked Example

The price of a carin £s, x years after purchase, is modelled by the function
f(x) =5000 (0.58)* — 100 sin x,

x>0

(a) Use the model to find the value, to the nearest hundred £s, of the car 5 years after purchase.

(b) Show that f(x) has aroot between 7 and 8.

(c) Taking 7.5 as a first approximation, apply the Newton-Raphson method once to f(x) to obtain a second approximation for the time

when the value of the car is zero. Give your answer to 3 decimal places.
(d) Criticise this model with respect to the value of the car as it gets older.

Page 44

1.287: 10D all Qs, P.86: 10.4 all Qs




Extract from Formulae book

Numerical Methods

b b-a
The trapezium rule: J ydx = éh {(y,+y)+2( y,+y, ...ty )}, where h=
a v 4 n - il - “n ’I
. . . f(‘\.n)
The Newton-Raphson iteration for solving f(x) =0 : . F(x )
X
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Past Paper Questions

Figure 8 shows a sketch of the curve C with equation y =x*, x > 0
(a) Find, by firstly taking logarithms, the x coordinate of the turning point of C.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

The point P(a, 2) lies on C.

(b) Show that 1.5<a< 1.6

A possible iteration formula that could be used in an attempt to find « is

= 2.‘. l=x,

X n+l n

Using this formula with x, = 1.5

(c) find x, to 3 decimal places,

(d) describe the long-term behaviour of x,

(2)

2)

(2)

B Exams

VA ﬁT e Formula Booklet

C » Past Papers
s Practice Papers

« past paper Qs by topic

=y

Past paper practice by
topic. Both new and old
specification can be
found via this link on
hgsmaths.com
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Summary of Key Points

Summary of key points

1 If the function f(x) is continuous on the interval [a, b] and f(a) and f(b) have opposite signs,
then f(x) has at least one root, x, which satisfies ¢ < x < b.

2 To solve an equation of the form f(x) = 0 by an iterative method, rearrange f(x) = 0 into the
form x = g(x) and use the iterative formula x,,, , = g(x,).

3 The Newton-Raphson formula for approximating the roots of a function f(x) is

f(x,)
~f(x,)

.\',, - '\.n

1.289: mixed ex, P.88: BSG
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