

Year 13 Pure Mathematics P2 10 Numerical Methods

Dr Frost Course

Class:

Contents

10.1) Locating roots10.2) Iteration10.3) The Newton-Raphson method10.4) Applications to modelling

Extract from Formulae booklet Past Paper Practice Summary

Prior knowledge check

10.1) Locating roots	

Why do we need numerical methods?

Finding the root of a function f(x) is to: solve the equation f(x) = 0(i.e. the inputs such that the output of the function is 0)

However, for some functions, the 'exact' root is either complicated and difficult to calculate:

$$x^{3} + 2x^{2} - 3x + 4 = 0$$
 $x = \frac{1}{3} \left(-2 - \frac{13}{\sqrt[3]{89 - 6\sqrt{159}}} - \sqrt[3]{89 - 6\sqrt{159}} \right)$

or there's no 'algebraic' expression at all! (involving roots, logs, sin, cos, etc.)

 $x - \cos(x) = 0$

Exact solution not expressible 😕

But there are a variety of 'numerical methods' which get progressively better solutions to an equation in the form f(x) = 0. You have already seen 'iteration' at GCSE as one such method.

...and no sign change doesn't mean there isn't a root

Beware! Just because there isn't a sign change, doesn't mean there's no root in that interval.

The sign change method fails to detect a root if there were an **even number of roots** in that interval.

Explain why there are no real roots to $f(x) = \frac{1}{x-2}$ between x = 1 and x = 3

Using the same axes, sketch the graphs of

- $y = e^x$ and $y = \frac{1}{x}$
- a) Explain how your diagram shows that the function $f(x) = e^x \frac{1}{x}$ has only one root
- b) Show that this root lies in the interval 0.5 < x < 0.6
- c) Show that the root is 0.567 to 3 decimal places

10.2) Iteration	

Why does this method work?

Solve
$$x^2 - x - 1 = 0$$

Recall we put in the form x = g(x): in this case $x = \sqrt{x+1}$ is one possible rearrangement. We can then use the recurrence $x_{n+1} = \sqrt{x_n+1}$. Why does this recurrence work?

Cobweb Diagrams

And when iteration fails...

Solve
$$x^2 - x - 1 = 0$$

But again, we could have rearranged differently! $x = x^2 - 1$ Therefore we use the recurrence $x_{n+1} = x_n^2 - 1$. What happens this time?

Notes

$$f(x) = x^2 - 5x - 3$$

a) Show that f(x) = 0 can be written as: i) $x = \frac{x^2-3}{5}$ ii) $x = \sqrt{5x+3}$ iii) $x = 5 + \frac{3}{x}$ b) Starting with $x_0 = 3$ use each iterative formula to find a root of the equation f(x) = 0, rounding your answers to 3 decimal places

Worked Example	
	$f(x) = e^{x-2} + x - 5$
a) Show that $f(x) = 0$ can be written as:	
	$x = \ln(5 - x) + 2, x < 5$
The root of $f(x) = 0$ is α .	
The iterative formula	
	$x_{n+1} = \ln(5 - x_n) + 2, \qquad x_0 = 3$
is used to find an approximate value for α	
b) (alculate the values of x_1, x_2 and x_3 to four	
decimal places	
c) By choosing a suitable interval, chow that	
C) By Choosing a suitable interval, show that	
$\alpha = 2.792$ correct to 3 decimal places.	

$$f(x) = x^3 + 4x^2 + 3x - 12$$

(a) Show that the equation can be written as

$$x = \sqrt{\frac{3(4-x)}{4+x}}, x \neq -4$$

The equation f(x) = 0 has a single root between 1 and 2. (b) Use the iterative formula

$$x_{n+1} = \sqrt{\frac{4(3-x_n)}{3+x_n}}$$
, $n \ge 0$, $x_0 = 1$

to calculate the values of x_1 , x_2 and x_3 , giving your answers to 2 decimal places. (c) The root of f(x) = 0 is α . By choosing a suitable interval, prove that $\alpha = 1.253$ (3 dp)

Your Turn

Use the graph of y = x and $y = \frac{3}{x-1}$ to solve the equation $x^2 - x - 3 = 0$ using the recurrence relation: $x_{n+1} = \frac{3}{x_n - 1}, x_0 = -4.5$ -2 -4

Your Turn

Your Turn

10.3) The Newton-Raphson method

The Newton-Raphson Process

When does Newton-Raphson fail?

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

If the starting value x_0 was the stationary point, then $f'(x_0) = 0$, resulting in a division by 0 in the above formula.

Graphically, it is because the tangent will never reach the x-axis.

Newton-Raphson also suffers from the same drawbacks as solving by iteration, in that it's possible for the values of x_i to **diverge**.

In this example, the x_i oscillate either side of 0, but gradually getting further away from $\alpha = 0$.

Worked example	Your turn
Using the Newton-Raphson process, state the recurrence relation for the following functions: $f(x) = x^4 - 3$	Using the Newton-Raphson process, state the recurrence relation for the following functions: $f(x) = x^3 - 2$
$g(x) = \sec x$	$g(x) = \tan x$
$h(x) = x^2 + x + 3$	$h(x) = x^2 - x - 1$

_

Worked example	Your turn
Using three iterations of the Newton-Raphson process, starting with $x_0 = 0.5$, solve the equation $x = \sin x$	Using three iterations of the Newton-Raphson process, starting with $x_0 = 0.5$, solve the equation $x = \cos x$
Pa	age 38

Worked example	Your turn
$f(x) = \frac{1}{3}x^4 - x^2 + 3x - 1$	$g(x) = \frac{1}{2}x^4 - x^3 + x - 3$
The equation $f(x) = 0$ has a root α in the interval $[-2, -3]$	The equation $g(x) = 0$ has a root β in the interval $[-2, -1]$
Taking -2.5 as a first approximation to α , apply the	Taking -1.5 as a first approximation to β , apply the
Newton-Raphson process once to $f(x)$ to obtain a second	Newton-Raphson process once to $g(x)$ to obtain a second
approximation to α .	approximation to β .
Give your answer to 2 decimal places.	Give your answer to 2 decimal places.

Worked example	Your turn
$f(x) = 11x^2 - \frac{3}{x^2}$	$g(x) = 3x^2 - \frac{11}{x^2}$
The equation $f(x) = 0$ has a root α in the interval [0, 1]	The equation $g(x) = 0$ has a root β in the interval [1, 2]
Taking 0.4 as a first approximation to α , apply the	Taking 1.4 as a first approximation to β , apply the
Newton-Raphson process once to $f(x)$ to obtain a second	Newton-Raphson process once to $g(x)$ to obtain a second
approximation to α .	approximation to β .
Give your answer to 3 decimal places.	Give your answer to 3 decimal places.

Worked example	Your turn
WORKED EXAMPLE $f(x) = x^2 - 5x + 8$ State why $x_0 = 2.5$ is not suitable to use as a first approximation to the roots of $f(x)$ when applying the Newton-Raphson method.	Four turn $f(x) = x^2 + 7x + 8$ State why $x_0 = -3.5$ is not suitable to use as a first approximation to the roots of $f(x)$ when applying the Newton-Raphson method.

10.4) Applications to modelling

Notes

The price of a car in \pounds s, x years after purchase, is modelled by the function

$$f(x) = 5000 \ (0.58)^x - 100 \sin x \,, \qquad x > 0$$

- (a) Use the model to find the value, to the nearest hundred £s, of the car 5 years after purchase.
- (b) Show that f(x) has a root between 7 and 8.
- (c) Taking 7.5 as a first approximation, apply the Newton-Raphson method once to f(x) to obtain a second approximation for the time when the value of the car is zero. Give your answer to 3 decimal places.
- (d) Criticise this model with respect to the value of the car as it gets older.

Numerical Methods

The trapezium rule:
$$\int_{a}^{b} y \, dx \approx \frac{1}{2} h\{(y_{0} + y_{n}) + 2(y_{1} + y_{2} + \dots + y_{n-1})\}, \text{ where } h = \frac{b-a}{n}$$

The Newton-Raphson iteration for solving f(x) = 0: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Past Paper Questions

M1 This mark is for a method to find the x-coordinate of the turning point of C by taking logarithms

 $y = x^{a} \Rightarrow \ln y = x \ln x$

Part Working or answer an examiner might Mark Notes expect to see

Summary of key points

- 1 If the function f(x) is continuous on the interval [a, b] and f(a) and f(b) have opposite signs, then f(x) has at least one root, x, which satisfies a < x < b.</p>
- 2 To solve an equation of the form f(x) = 0 by an iterative method, rearrange f(x) = 0 into the form x = g(x) and use the iterative formula x_{n+1} = g(x_n).
- **3** The Newton–Raphson formula for approximating the roots of a function f(x) is

$$x_{n+1} = x_n - \frac{\mathsf{f}(x_n)}{\mathsf{f}'(x_n)}$$