

Year 13 Pure Mathematics 9 Differentiation (part 1)

Dr Frost Course

HGS Maths

Name:

Class:

Contents

- 9.1) Differentiating $\sin x$ and $\cos x$
- 9.2) Differentiating exponentials and logarithms
- 9.3) The chain rule
- 9.4) The product rule
- 9.5) The quotient rule
- 9.6) Differentiating trigonometric functions
- 9.7) Parametric differentiation
- 9.8) Implicit differentiation
- 9.9) Using second derivatives
- 9.10) Rates of change

Prior knowledge check

9.1) Differentiating sin x and cos x

Why does this result only hold in radians?

Explanation 1:

The approximations $\sin x \approx x$ and $\cos x \approx 1 - \frac{1}{2}x^2$ (as $x \to 0$) only holds if x is in radians (we saw why in the chapter on radians). The proof that $\frac{d}{dx}(\sin x) = \cos x$ made use of these approximations.

Explanation 2:

We can see by observation if we look at the graph of $\sin x$ in radians and in degrees.

However when x is in degrees and again using the same scale for both axes, we can clearly see the gradient is much lower than 1.

Notes

Prove, from first principles, that the derivative of $\sin x$ is $\cos x$.

You may assume that as $h \to 0$, $\frac{\sin h}{h} \to 1$ and $\frac{\cos h - 1}{h} \to 0$

Worked Example

 Find:

$$\frac{d}{dx}(\sin 5x)$$
 $\frac{d}{dx}(\cos \frac{1}{2}x)$
 $\frac{d}{dx}(6\sin 7x - 4\cos 3x)$

T.234: Q 1-3 ,P.70 Q 1

A curve has equation $y = \frac{1}{4}x - \cos 3x$.

Find the stationary points on the curve in the interval $0 \le x \le \pi$

A curve has equation $y = \sin 5x + 3x$. Find the stationary points on the curve in the interval $0 \le x \le \frac{3}{5}\pi$

A curve has equation $y = \sin 4x - \cos 3x$. Find the equation of the tangent to the curve at the point $(\pi, 1)$

A curve has equation $y = 3x^2 - \sin x$. Show that the equation of the normal to the curve at the point with *x*-coordinate π is

 $x + (6\pi + 1)y - \pi(18\pi^2 - 3\pi - 1) = 0$

9.2) Differentiating exponentials and logarithms

Notes

Proof

Prove that the derivative of a^{kx} is $a^{kx}k \ln a$

Worked Example			
Find:			
$\frac{d}{dx}(5e^{2x})$	$\frac{d}{dx}\left(4e^{\frac{1}{3}x}\right)$	$\frac{d}{dx}(3e^{-0.5x})$	
	ux	<i>u</i> x	

Worked Example			
Find: $\frac{d}{dx}(5(2^x))$	$\frac{d}{dx}(4(3^x))$	$\frac{d}{dx}(3(4^x))$	

Worked Example			
Find:			
$\frac{d}{dx}(\ln 2x)$	$\frac{d}{dx}(\ln 3x)$	$\frac{d}{dx}(\ln 4x)$	

Worked Example		
Find: $\frac{d}{dx}(2\ln x)$	$\frac{d}{dx}(3\ln x)$	$\frac{d}{dx}(4\ln x)$

Worked Example			
Find: $\frac{d}{dx}(\ln x^2)$	$\frac{d}{dx}(\ln x^3)$	$\frac{d}{dx}(\ln x^4)$	

Find:

 $\frac{d}{dx}(e^x - 3)^2$

The population P of a species after t days can be modelled using $P = 640(2^{-3t})$

a) Determine how many days have elapsed before there are 20 individuals left b) Determine the rate of change of the population after 3 days.

A curve has the equation

$$y = e^{4x} - \ln x$$

Show that the equation of the tangent to the curve at the point with *x*-coordinate 1 is:

$$y = (4e^4 - 1)x - 3e^4 + 1$$

A curve has the equation

 $y=5(2^{3x})$

Find the equation of the normal to the curve at the point with x-coordinate 1 in the form y = ax + b, where a and b are constants to be found in exact form

9.3) The chain rule

Notes

597a: Apply the chain rule to differentiate functions of the form $f(x) = a(bx + c)^n$ for rational n

Given that $y=9\sqrt[3]{9x+10}$

find $\frac{dy}{dx}$

597a: Apply the chain rule to differentiate functions of the form $f(x) = a(bx + c)^n$ for rational n

Given that
$$y=rac{1}{\sqrt[3]{8x+4}}$$

find $\frac{dy}{dx}$

597c: Apply the chain rule to differentiate functions of the form $\ln(ax+b)$, e^{ax+b} , $\sin(ax+b)$ or $\cos(ax+b)$ where the inner function is linear.

Given that $y = 7 \ln (5x + 9)$

find $\frac{dy}{dx}$

Differentiate with respect to *x*:

$$y = e^{x^2 + x}$$
 $f(x) = e^{x^3 - 2x + 1}$

Differentiate with respect to *x*: $y = \ln(\sin x)$ 597c: Apply the chain rule to differentiate functions of the form $\ln(ax + b)$, e^{ax+b} , $\sin(ax + b)$ or $\cos(ax + b)$ where the inner function is linear.

Given that $y = 9\sin(7x - 9)$

find $\frac{dy}{dx}$

Differentiate with respect to x: $y = \sin^4 x$ $f(x) = \cos^3 x$

Differentiate with respect to *x*:

$$y = \sin^4 3x \qquad \qquad f(x) = \cos^3 2x$$

Differentiate with respect to *x*:

$$y = e^{e^{-x}}$$

Given that $y = \sqrt{2x^5 - 2}$, find $\frac{dy}{dx}$ at (3,22)

A curve C has equation

$$y = \frac{3}{(2-5x)^4}, x \neq \frac{2}{5}$$

Find an equation for the normal to C at the point with x-coordinate 1 in the form ax + by + c = 0, where a, b and c are integers

Your Turn

A curve *C* has equation

$$y = \frac{4}{(3-2x)^5}, x \neq \frac{3}{2}$$

Find an equation for the normal to C at the point with x-coordinate 2 in the form ax + by + c = 0, where a, b and c are integers

x + 40y + 158 = 0

Find the gradient of: $x = (1 + 2y)^3$ when y = 1

$$x = (3y^2 - 2)^4$$
 at $(1, -1)$

Worked Example Find $\frac{dy}{dx}$ when: $x = 2y^2 + y$ $x = 3y^4 - y^2 - 1$

9.4) The product rule

Notes

597f: Use the product rule with simple functions.

Given that

$$y = 4x^8 e^x$$

find $\frac{dy}{dx}$.

Given that

$$y = 9\ln{(x)}e^x$$

find $\frac{dy}{dx}$.

597f: Use the product rule with simple functions.

Given that

 $y=8x^{6}\sin\left(x
ight)$ find $rac{dy}{dx}.$

Differentiate with respect to *x*:

$$y = e^{3x} \sin^4 2x$$
 $f(x) = e^{2x} \cos^3 4x$

Determine the coordinates of the turning point: $y = xe^{3x}$ $f(x) = xe^{4x}$

Differentiate with respect to *x*:

$$y = x^2 \sqrt{5x - 2}$$

Find the equation of the tangent to the curve with equation $y = x^2 \sin(x^2)$ at the point $\left(\frac{\sqrt{\pi}}{2}, \frac{\pi\sqrt{2}}{8}\right)$ in the form ax + by + c = 0 where a, b and c are exact constants.

Worked Example Differentiate with respect to *x*: $\frac{dy}{dx} = \frac{1}{5x(x+1)^{\frac{1}{2}}}$

9.5) The quotient rule

Notes	

597h: Use the quotient rule with simple functions.

Given that

$$y = \frac{2\sin{(x)}}{\ln{(x)}}$$
 find $\frac{dy}{dx}.$

Differentiate with respect to *x*:

$$y = \frac{x^2}{\ln 5x} \qquad \qquad y = \frac{\ln 4x}{x^4}$$

Differentiate with respect to *x*:

$$y = \frac{\cos 3x}{x^4} \qquad \qquad f(x) = \frac{x^4}{\cos 3x}$$

597i: Use the quotient rule and the chain rule within a single expression.

Given that

$$y = \frac{\left(4x^8 + 9x^9\right)}{e^{8x^2 + 2x}}$$
 find $\frac{dy}{dx}.$

Find the stationary point of

$$y = \frac{\cos x}{e^{3x}}, 0 < x < \pi$$

Worked Example Find the equation of the tangent to the curve $y = \frac{e^{\frac{1}{4}x}}{x}$ at the point $(4, \frac{1}{4}e)$