

Year 13 Applied Mathematics M2 8 Further Kinematics

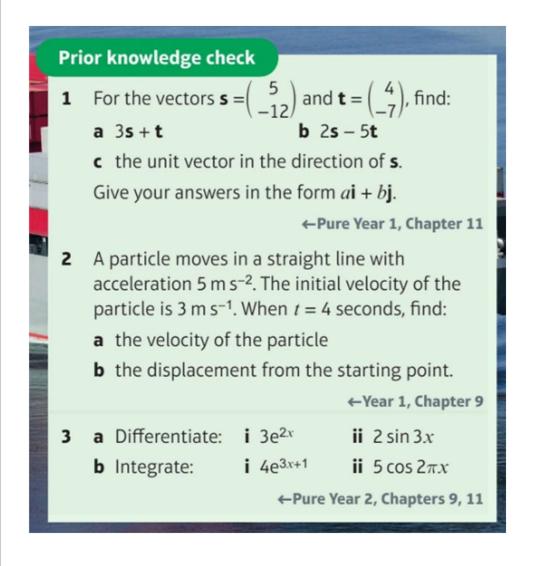
Name:

Class:

Contents 8.1) Vectors in kinematics 8.2) Vector methods with projectiles 8.3) Variable acceleration in one dimension 8.4) Differentiating vectors 8.5) Integrating vectors

Extract from Formulae booklet Past Paper Practice Summary

Prior knowledge check



8.1) Vectors in kinematics

Position vector r of particle: $r = r_0 + vt$ where r_0 is initial position and v is velocity.

Notes

A particle starts from the position vector (7i - 2j) m and moves with constant velocity (-3i + j) ms⁻¹.

- (a) Find the position vector of the particle 2 seconds later.
- (b) Find the time at which the particle is due north of the origin.

A particle *P* has velocity (-i + 5j) ms⁻¹. The particle moves with constant acceleration a = (4i + 7j) ms⁻². Find:

- (a) the speed of the particle at time t = 6 seconds.
- (b) the bearing on which it is travelling at time t = 6 seconds.

An ice skater is skating on a large flat ice rink. At time t = 0 the skater is at a fixed point 0 and is travelling with velocity $(-4i - 9j) ms^{-1}$. At time t = 5 s the skater is travelling with velocity $(-34i + 29j) ms^{-1}$.

Relative to *O*, the skater has position vector *s* at time *t* seconds.

Modelling the ice skater as a particle with constant acceleration, find:

- (a) The acceleration of the ice skater
- (b) An expression for s in terms of t
- (c) The time at which the skater is directly south-west of *O*.

A second skater travels so that she has position vector

r = (-132i + (6 - 22t)j) m relative to 0 at time t.

(d) Show that the two skaters will meet.

A ship *S* is moving with constant velocity $(2i + 4j) kmh^{-1}$. At time t = 0, the position vector of *S* is (-3i + 5j) km. A ship *T* is moving with constant velocity $(6i + nj) kmh^{-1}$ At time t = 0, the position vector of *T* is (-15i + 2j) km. The two ships meet at point *P*. Find the value of *n* and the distance *OP*

8.2) Vector methods with projectiles

Notes	

A ball is struck by a racket from a point A which has position vector 40j m relative to a fixed origin O. Immediately after being struck, the ball has velocity (7i + 10j) ms⁻¹, where i and j are unit vectors horizontally and vertically respectively. After being struck, the ball travels freely under gravity until it strikes the ground at point B.

- (a) Find the speed of the ball 3 seconds after being struck.
- (b) Find an expression for the position vector, r, of the ball relative to 0 at time t seconds.
- (c) Hence determine the distance *OB*.

The point O is a fixed point on a horizontal plane.

A ball is projected from O with velocity $(4i + 8j) ms^{-1}$.

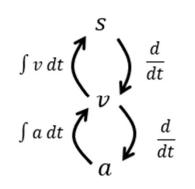
The ball passes through a point A at time t seconds after projection. The point B is on the horizontal plane

vertically below A. It is given that OB = 4AB. Find:

a) The value of *t*

b) The speed of the ball at the instant it passes through A

8.3) Variable acceleration in one dimension



In Mechanics Yr1 we saw that velocity was the rate of change of displacement, and thus $v = \frac{ds}{dt}$. Similarly acceleration is the rate of change of velocity, and thus $a = \frac{dv}{dt}$

Let's stick to one-dimension for the moment, but you may need to differentiate more complex functions of t that use **Pure Year 2 techniques**.

Notes	

A particle is moving in a straight line with acceleration at time t seconds given by

 $a = \cos 5\pi t \, \mathrm{ms}^{-2}$, $t \ge 0$

The velocity of the particle at time t = 0 is $\frac{1}{5\pi}ms^{-1}$. Find:

(a) an expression for the velocity at time t seconds

(b) the maximum speed

(c) the distance travelled in the first 6 seconds.

A particle of mass 12kg is moving on the positive x-axis. At time t seconds the displacement, s, of the particle from the origin is given by

$$s = 3t^{\frac{5}{2}} + \frac{e^{-3t}}{4}$$
 m, $t \ge 0$

(a) Find the velocity of the particle when t = 2.5.

Given that the particle is acted on by a single force of variable magnitude F N which acts in the direction of the positive x-axis,

(b) Find the value of F when t = 4

Suppose that $v = \begin{pmatrix} t^2 \\ \sin t \end{pmatrix}$. What would be the acceleration? We can simply differentiate the *i* and *j* components independently: $a = \frac{dv}{dt} = \begin{pmatrix} 2t \\ \cos t \end{pmatrix}$

If
$$\mathbf{r} = x\mathbf{i} + y\mathbf{j}$$
 then $\mathbf{v} = \frac{d\mathbf{r}}{dt} = \dot{\mathbf{r}} = \dot{x}\mathbf{i} + \dot{y}\mathbf{j}$
and $\mathbf{a} = \frac{d\mathbf{v}}{dt} = \frac{d^2\mathbf{r}}{dt} = \ddot{\mathbf{r}} = \ddot{x}\mathbf{i} + \ddot{y}\mathbf{j}$

Notational note: Dot notation is a short-hand for differentiation with respect to time: $\dot{x} = \frac{dx}{dt}$ Its use is common in Physics.

Notes	

A particle P of mass 1.6kg is acted on by a single force \mathbf{F} N. Relative to a fixed origin O, the position vector of P at time t seconds is r metres, where

$$\boldsymbol{r} = 5t^3\boldsymbol{i} + 20t^{-\frac{1}{5}}\boldsymbol{j}, \qquad t \ge 0$$

Find:

- (a) the speed of P when t = 2
- (b) the acceleration of P as a vector when t = 4

(c) **F** when t = 4.

8.5) Integrating vectors

Notes	

A particle *P* is moving in a plane. At time *t* seconds, its velocity v ms⁻¹ is given by

$$\boldsymbol{v} = 2t\boldsymbol{i} + \frac{1}{3}t^2\boldsymbol{j}, \qquad t \ge 0$$

When t = 0, the position vector of P with respect to a fixed O is (5i - 4j) m. Find the position vector of P at time t seconds.

A particle P is moving in a plane so that, at time t seconds, its acceleration is $(3i - 4tj) ms^{-2}$.

When t = 2, the velocity of *P* is $-3j m s^{-1}$ and the position vector of *P* is (20i + 3j) m with respect to a fixed origin *O*. Find:

- (a) the angle between the direction of motion of *P* and *j* when t = 3
- (b) the distance of *P* from *O* when t = 0.

The velocity of a particle *P* at time *t* seconds is

 $((6t^2-4)i+10j)ms^{-1}$.

When t = 0, the position vector of P with respect to a fixed origin O is (5i - 3j) m.

A second particle Q moves with constant velocity

 $(3i + 5j) ms^{-1}$.

When t = 0, the position vector of Q with respect to the fixed origin O is 2j m.

Prove that *P* and *Q* collide.

Mechanics

Kinematics

For motion in a straight line with constant acceleration:

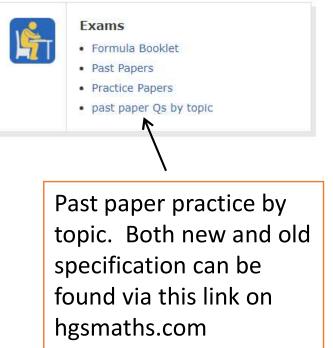
v = u + at $s = ut + \frac{1}{2}at^{2}$ $s = vt - \frac{1}{2}at^{2}$ $v^{2} = u^{2} + 2as$ $s = \frac{1}{2}(u + v)t$

Past Paper Questions

8. [In this question i and j are horizontal unit vectors due east and due north respectively and position vectors are given relative to the fixed point O.]
A particle P moves with constant acceleration.
At time t = 0, the particle is at O and is moving with velocity (2i - 3j)ms⁻¹
At time t = 2 seconds, P is at the point A with position vector (7i - 10j)m.
(a) Show that the magnitude of the acceleration of P is 2.5 ms⁻²
(4)
At the instant when P leaves the point A, the acceleration of P changes so that P now moves with constant acceleration (4i + 8.8j)ms⁻²
At the instant when P reaches the point B, the direction of motion of P is north east.

(b) Find the time it takes for P to travel from A to B.

(4)



Question	Scheme	Marks	AOs
8(a)	Use of $\mathbf{r} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$: $(7\mathbf{i} - 10\mathbf{j}) = 2(2\mathbf{i} - 3\mathbf{j}) + \frac{1}{2}\mathbf{a}2^2$	МІ	3.1b
	a = (1.5i - 2j)	AI	1.16
Question 8(a) (b)	$ \mathbf{a} = \sqrt{1.5^2 + (-2)^2}$	MI	1.16
	= 2.5 m s ⁻² * GIVEN ANSWER	A1*	2.1
		(4)	
(p)	Use of $v = u + at = (2i - 3j) + 2(1.5i - 2j)$	MI	3.1b
	=(5i-7j)	Al	1.16
	$\mathbf{v} = (5\mathbf{i} - 7\mathbf{j}) + t(4\mathbf{i} + 8.8\mathbf{j}) = (5 + 4t)\mathbf{i} + (8.8t - 7)\mathbf{j}$ and (5 + 4t) = (8.8t - 7)	МІ	3.1b
	<i>t</i> = 2.5 (s)	AI	1.16
		(4)	
		(8 marks)	

Summary of key points

- 1 If a particle starts from the point with position vector r₀ and moves with constant velocity v, then its displacement from its initial position at time t is vt and its position vector r is given by r = r₀ + vt.
- 2 For an object moving in a plane with constant acceleration:
 - v = u + a/

•
$$\mathbf{r} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$$

where

- · u is the initial velocity
- · a is the acceleration
- v is the velocity at time t
- r is the displacement at time t.

3 If
$$\mathbf{r} = x\mathbf{i} + y\mathbf{j}$$
, then $\mathbf{v} = \frac{d\mathbf{r}}{dt} = \mathbf{\dot{r}} = x\mathbf{i} + y\mathbf{j}$
and $\mathbf{a} = \frac{d\mathbf{v}}{dt} = \frac{d^2\mathbf{r}}{dt^2} = \mathbf{\ddot{r}} = x\mathbf{i} + y\mathbf{j}$
4 $\mathbf{v} = \int \mathbf{a} dt$ and $\mathbf{r} = \int \mathbf{v} dt$