Further Pure Mathematics 2 Practice Paper 1 – answers

Exam-style practice: A level

- $1 \quad x \equiv 31 \pmod{75}$
- 2 a 56
 - b Cayley table is

100 .00				
\mathbf{x}_{12}	1	5	7	11
1	1	5	7	11
5 7	5 7	1	11	7
7	7	11	1	5
11	11	7	5	1

Closure: All entries in the Cayley table are in S_A . Identity: The row and column corresponding to 1 are the same as the column and row headings, so 1 is the identity.

Inverse: All elements are self-inverse

Associativity: Assumed

So S_A forms a group under \times_{12} .

Since all elements have order ≤ 2, there are no elements that can act as generator for the group, so S_A is a non-cyclic group.

- c S_n has element 3 with order 4, so S_n is a cyclic group of order 4. S_c has $1^2 = 3^2 = 5^2 = 7^2 = 1$, so has no elements of order 4, so $S_c \not\cong S_n$ Since there are only two possible groups of order 4, S_A must be isomorphic to either S_B or S_C .
- d Assume $n \ge 6$. Then $2^2 = 4$, which is not in the set, so the set is not closed under x, so cannot be a group. So $n \le 4$.

When n is either 2 or 4, $2^2 = 4 \equiv 0$, but 0 is not in the set either, so the set is not closed under xx. Therefore the set cannot form a group under x, for any even n.

3 a $(x+4)^2 + (y-2)^2 = 34$

d -1 + 7i and -1 - 3i

b, c arg(z + 1) = $(x+4)^2 + (y-2)^2 = 34$ Re arg(z+1) =

ii 2; 2 is repeated as (λ - 2) is a repeated factor in the characteristic equation.

$$\mathbf{b} \quad \begin{pmatrix} \sqrt{\frac{2}{3}} \\ 0 \\ \frac{1}{\sqrt{3}} \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

$$\mathbf{c} \quad \mathbf{D} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \mathbf{P} = \begin{pmatrix} \sqrt{\frac{2}{3}} & 0 & -\frac{1}{\sqrt{3}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{3}} & 0 & \sqrt{\frac{2}{3}} \end{pmatrix}$$

5 **a**
$$I_{n+2} = S_{n+2} + M_{n+2} + D_{n+2}$$

$$= \frac{1}{6}I_{n+1} + \left(\frac{2}{3}I_{n+1} - \frac{1}{6}I_n\right) + d$$

$$= \frac{5}{6}I_{n+1} - \frac{1}{6}I_n + d$$

b
$$I_n = 5d\left(\frac{1}{3}\right)^n - 7d\left(\frac{1}{2}\right)^n + 3d$$

c As $n \to \infty$, $I_n \to 3d$

c As
$$n \rightarrow \infty$$
 $I \rightarrow 3d$

a
$$\alpha = 2$$
 b $\frac{16\pi}{3}$

7 **a**
$$I_{n+1} = \left[-\cos x \sin^{2n+1} x \right]_{0}^{n} + (2n+1) \int_{0}^{\pi} \sin^{2n} x \cos^{2x} dx$$

 $= (2n+1) \int_{0}^{\pi} \sin^{2n} x (1-\sin^{2} x) dx$
 $= (2n+1) (I_{n} - I_{n+1})$
 $\Rightarrow I_{n+1} = \frac{2n+1}{2n+2} I_{n}$
b Basis: $n = 0$: $\frac{0! \times \pi}{(0!)^{2} \times 2^{0}} = \pi$

b Basis:
$$n = 0$$
: $\frac{0! \times \pi}{(0!)^2 \times 2^0} = \pi$

Assumption:
$$\int_0^x \sin^{2k}x \, dx = \frac{(2k)!\pi}{(k!)^2 2^{2k}}$$

$$\begin{aligned} & \underbrace{\prod_{0}^{\text{ranchon:}}}_{0} \sin^{2(k+1)}x \, \mathrm{d}x = I_{k+1} = \frac{2k+1}{2k+2} \int_{0}^{\pi} \sin^{2k}x \, \mathrm{d}x \\ & = \frac{(2k+1)(2k)!\pi}{2(k+1)(k!)^{2} 2^{2k}} = \frac{(2k+2)!\pi}{2^{2}(k+1)^{2}(k!)^{2} 2^{2k}} \\ & = \frac{(2(k+1))!\pi}{((k+1)!)^{2} 2^{2(k+1)}} \end{aligned}$$

So if the solution is valid for n = k, it is valid for n = k + 1

Conclusion: The solution is valid for all $n \in \mathbb{Z}$, $n \ge 0$.

b 3439