Specimen Paper 9FM0/3A: Further Pure Mathematics 1 Mark scheme

Question	Scheme		Marks	AOs
1	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = a \sec \theta \tan \theta, \ \frac{\mathrm{d}y}{\mathrm{d}\theta} = b \sec^2 \theta$	$k\frac{x}{a^2} - n\frac{y}{b^2}\frac{dy}{dx} = 0 \text{ where}$ k > 0 and n > 0	M1	2.1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{b\mathrm{sec}^2\theta}{a\mathrm{sec}\theta\mathrm{tan}\theta} \left(=\frac{b\mathrm{sec}\theta}{a\mathrm{tan}\theta} = \frac{b}{a\mathrm{sin}\theta}\right)$	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{b^2 x}{a^2 y} = \frac{b \sec \theta}{a \tan \theta}$	A1	1.1b
	$y - b \tan \theta = \left(\frac{b \sec \theta}{a \tan \theta}\right) (x - a \sec \theta)$		M1	1.1b
	$ya an \theta = xb \sec \theta - ab^*$		A1*	2.1
			(4)	
	(4 marks)			
Notes:				
M1: Differentiates in an attempt to find $\frac{dy}{dx}$				
either differentiates x and y and divides $\frac{dy}{d\theta}$ by $\frac{dx}{d\theta}$				
or achieves $k \frac{x}{a^2} - n \frac{y}{b^2} \frac{dy}{dx} = 0$ where $k > 0$ and $n > 0$				
A1: Correct	A1: Correct expression for $\frac{dy}{dx}$			

M1: Uses
$$y - b \tan \theta =$$
 'their $\frac{dy}{dx}$ ' ($x - a \sec \theta$)

A1*: Uses correct algebra and trig identities to achieve the correct equation of the tangent.

Question	Scheme	Marks	AOs
2(a)	$\mathbf{b} \times \mathbf{c} = 0\mathbf{i} + 5\mathbf{j} + 5\mathbf{k} \text{ or } \begin{pmatrix} 0\\5\\5 \end{pmatrix}$	M1	1.1b
	area of triangle $OBC = \frac{1}{2} 0\mathbf{i} + 5\mathbf{j} + 5\mathbf{k} = \frac{1}{2}\sqrt{50} = \frac{5}{2}\sqrt{2}$ o.e.	A1	2.2a
		(2)	
(b)	$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 5 \\ 5 \end{pmatrix} = 0 + 5 + 0 = 5$	M1	1.1b
	volume of tetrahedron $OABC = \frac{1}{6} \times 5 = \frac{5}{6}$	A1	2.2a
		(2)	
	(4 mark		narks)
Notes:			
(a) M1: Attempts the vector product $\mathbf{b} \times \mathbf{c}$, with at least two correct terms. A1: Deduces area of triangle $OBC = \frac{1}{2} \mathbf{b} \times \mathbf{c} $			
(b) M1: Attempt at the triple scaler product $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$ A1: Deduces volume of tetrahedron $OABC = \frac{1}{6} \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) $			

Question	Scheme	Marks	AOs
3(a)	$4\tan x + 3\cot\left(\frac{x}{2}\right) \sec^2\left(\frac{x}{2}\right)$		
	$=4\tan x + \frac{3}{\tan\left(\frac{x}{2}\right)} \left(1 + \tan^2\left(\frac{x}{2}\right)\right)$	M1	2.1
	$= 4\left(\frac{2t}{1-t^2}\right) + \frac{3}{t}(1+t^2)$		
	$\left(\frac{8t}{1-t^2}\right) + \frac{3(1+t^2)}{t} = 0$		
	$8t^{2} + 3(1 + t^{2})(1 - t^{2}) = 0 \text{ or } \frac{8t^{2} + 3(1 + t^{2})(1 - t^{2})}{t(1 - t^{2})} = 0$	MI	1.16
	$3t^4 - 8t^2 - 3 = 0 *$	A1*	1.1b
		(3)	
(b)	Solves quadratic for t^2 by factorising, quadratic formula, calculator $(3t^2 + 1)(t^2 - 3) = 0, t^2 = \frac{8 \pm \sqrt{(-8)^2 - 4(3)(-3)}}{2(3)}$	M1	2.10
	$t^2 = 3$, $t^2 = -\frac{1}{3}$ leading to value for $t = \dots$	IVI I	3.1a
	$t = \pm \sqrt{3}$	A1	1.1b
	Finds two correct values for $x = -\frac{4\pi}{3}$, $-\frac{2\pi}{3}$, $\frac{2\pi}{3}$, $\frac{4\pi}{3}$	M1	1.1b
	All correct values for $x = -\frac{4\pi}{3}$, $-\frac{2\pi}{3}$, $\frac{2\pi}{3}$, $\frac{4\pi}{3}$	A1	2.2a
		(4)	
		(7 n	narks)
Notes:			
(a)	(x) = 2(x)		
M1: Expres	ses $3\cot\left(\frac{\pi}{2}\right) \sec^2\left(\frac{\pi}{2}\right)$ in terms of $\tan\left(\frac{\pi}{2}\right)$ and uses t substitutions to obta	in an expr	ession
M1: Multip	lies through by t and $(1 - t^2)$ or forms a common denominator		
$A1^*: 3t^4 - 8t^2 - 3 = 0 \cos(t^2)$			
M1: Solve the quadratic in t^2 leading to a value for t			
A1: Correct values for $t = \pm \sqrt{3}$			
M1: Finds two correct values for $x = -\frac{4\pi}{3}$, $-\frac{2\pi}{3}$, $\frac{2\pi}{3}$, $\frac{4\pi}{3}$			
A1: All corr	ect values for $x = -\frac{4\pi}{3}$, $-\frac{2\pi}{3}$, $\frac{2\pi}{3}$, $\frac{4\pi}{3}$		

Question	Scheme	Marks	AOs
4	Solves $x^2 - 2x - 2 = 0$ or $x^2 + 2x - 2 = 0$	M1	1.1b
	Solves both $x^2 - 2x - 2 = 0$ and $x^2 + 2x - 2 = 0$	M1	3.1a
	$x = \frac{2 \pm \sqrt{12}}{2} = 1 \pm \sqrt{3}$ and $x = \frac{-2 \pm \sqrt{12}}{2} = -1 \pm \sqrt{3}$	A1	1.1b
	Deduces the required roots are $x = 1 + \sqrt{3}$ and $x = -1 + \sqrt{3}$	M1	2.2a
	e.g. $\{x \in \mathbb{R}: x < -1 + \sqrt{3}\} \cup \{x \in \mathbb{R}: x > 1 + \sqrt{3}\}$	A1	2.5
		(5)	
		(5 n	narks)

Notes:

M1: Solves either $x^2 - 2x - 2 = 0$ or $x^2 + 2x - 2 = 0$

M1: Complete strategy to identify and solve all relevant equations and gets two critical values

A1: Correct exact values for *x*, may be unsimplified

M1: Deduces that the larger roots are required in each case

A1: Correct set of values given and correct set notation form

Question	Scheme	Marks	AOs	
5(i)	$\mathbf{b} \times \mathbf{a}$ is perpendicular to \mathbf{a} (and/or \mathbf{b})	M1	2.4	
	Therefore $\mathbf{a.}(\mathbf{b} \times \mathbf{a}) = 0$	A1	1.1b	
		(2)		
(ii)	$\mathbf{a} \times \mathbf{b} = \mathbf{a} \times \mathbf{c} \Rightarrow \mathbf{a} \times (\mathbf{b} - \mathbf{c}) = 0$	M1	3.1a	
	As $\mathbf{a} \neq 0$ and $\mathbf{b} \neq \mathbf{c}$ then \mathbf{a} is parallel to $(\mathbf{b} - \mathbf{c})$ therefore $\mathbf{b} - \mathbf{c} = \lambda \mathbf{a}$	A1	2.4	
		(2)		
	(4 marks)			
Notes:				
(i)	(i)			
M1: Reasoning that $\mathbf{b} \times \mathbf{a}$ is perpendicular to \mathbf{a}				
A1: $a.(b \times a) = 0$				
(ii)				
M1: Collecting on to one side and factorising				
A1: Reason	A1: Reasoning: as $\mathbf{a} \neq 0$ and $\mathbf{b} \neq \mathbf{c}$ then \mathbf{a} is parallel to $(\mathbf{b} - \mathbf{c})$ therefore $\mathbf{b} - \mathbf{c} = \lambda \mathbf{a}$			

Question	Scheme	Marks	AOs
6(a)	$x_0 = 0$, $y_0 = 1$, $\left(\frac{dy}{dx}\right)_0 = 0 - 1 = -1$	B1	1.1b
	$y_1 \approx y_0 + h \left(\frac{dy}{dx}\right)_0 = 1 + 0.05(-1) =$	M1	1.1b
	= 0.95	A1	1.1b
	$\left(\frac{dy}{dx}\right)_{1} = 0.05^{2} - 0.95^{2} = -0.9$ $y_{2} \approx y_{1} + h\left(\frac{dy}{dx}\right)_{1} = 0.95 + 0.05(-0.9) = \dots$	M1	2.1
	= 0.905	A1	1.1b
		(5)	
(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = x^2 - y^2 \Rightarrow \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2x - 2y\frac{\mathrm{d}y}{\mathrm{d}x}$	B1	2.1
	$\frac{d^3 y}{dx^3} = 2 - \lambda y \frac{d^2 y}{dx^2} \pm \mu \left(\frac{dy}{dx}\right)^2$ or substituting in $\frac{dy}{dx} = x^2 - y^2$ so that $\frac{d^2 y}{dx^2} = 2x - 2yx^2 + 2y^3$ $\Rightarrow \frac{d^3 y}{dx^3} = 2 \pm \alpha xy \pm \beta x^2 \frac{dy}{dx} + \delta y^2 \frac{dy}{dx}$	M1	1.1b
	$\frac{d^3 y}{dx^3} = 2 - 2y \frac{d^2 y}{dx^2} - 2\left(\frac{dy}{dx}\right)^2$ or $\frac{d^3 y}{dx^3} = 2 - 4xy - 2x^2 \frac{dy}{dx} + 6y^2 \frac{dy}{dx}$	A1	1.1b
		(3)	
(c)	$x = 0, y = 1 \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -1$	M1	2.2a
	$\frac{d^2 y}{dx^2} = 2(0) - 2(1)(-1) = 2$ $\frac{d^3 y}{dx^3} = 2 - 2(1)(2) - 2(-1)^2 = -4$	M1 A1	1.1b 1.1b
	$y = y(0) + y'(0)x + \frac{y''(0)x^2}{2} + \frac{y'''(0)x^3}{6} + \dots$	M1	2.5
	Series solution $y = 1 - x + x^2 - \frac{2}{3}x^3$	A1	1.1b
		(5)	
		(13 n	narks)

Notes:

(a) B1: $\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_0 = -1$ M1: Applies the approximation formula with y_0 and their value for $\left(\frac{dy}{dx}\right)_0$ A1: $y_1 = 0.95$ M1: Finds $\left(\frac{dy}{dx}\right)_1$ and applies the approximation formula with their values for y_1 and $\left(\frac{dy}{dx}\right)_1$ A1: $y_2 = 0.905$ **(b) B1:** Differentiates to $\frac{d^2y}{dx^2} = 2x - 2y\frac{dy}{dx}$ **M1:** Differentiates to the form $\frac{d^3y}{dx^3} = 2 - \lambda y \frac{d^2y}{dx^2} \pm \mu \left(\frac{dy}{dx}\right)^2$ where $\lambda > 0, \mu \neq 0$ or substituting in $\frac{dy}{dx} = x^2 - y^2$ so that $\frac{d^2y}{dx^2} = 2x - 2yx^2 + 2y^3$ $\Rightarrow \frac{d^3 y}{dx^3} = 2 \pm \alpha x \frac{dy}{dx} \pm \beta x^2 \frac{dy}{dx} + \delta y^2 \frac{dy}{dx} \text{ where } \delta > 0, \alpha, \beta \neq 0$ A1: $\frac{d^3y}{dx^3} = 2 - 2y\frac{d^2y}{dx^2} - 2\left(\frac{dy}{dx}\right)^2$ or $\frac{d^3y}{dx^3} = 2 - 4xy - 2x^2\frac{dy}{dx} + 6y^2\frac{dy}{dx}$ (c) **B1:** Deduces the value for $\frac{dy}{dx} = -1$ **M1:** Finds the values of $\frac{d^2y}{dx^2}$ and $\frac{d^3y}{dx^3}$ A1: Correct values for $\frac{d^2y}{dx^2}$ and $\frac{d^3y}{dx^3}$ M1: Substitutes into the correct formula and mathematical language, allow factorial notation A1: Correct series, must start with $y = \dots$

Question	Scheme	Marks	AOs
7(a)	$A = 1000 \left(1 + \frac{5}{1200}\right)^{12} = 1051.16^*$	B1*	1.1b
		(1)	
(b)	Let $y = \left(1 + \frac{r}{100n}\right)^n$ so $\ln y = \ln \left(1 + \frac{r}{100n}\right)^n = n \ln \left(1 + \frac{r}{100n}\right)$	M1	3.1a
	$\lim_{n \to \infty} \ln y = \lim_{n \to \infty} n \ln \left(1 + \frac{r}{100n} \right) = \lim_{n \to \infty} \frac{\ln \left(1 + \frac{r}{100n} \right)}{\frac{1}{n}}$	M1	2.1
	$= \lim_{n \to \infty} \left[\frac{\frac{-r}{100n^2}}{\left(1 + \frac{r}{100n}\right)} \div \frac{-1}{n^2} \right]$	dM1 A1	1.1b 1.1b
	$= \lim_{n \to \infty} \frac{r/100}{1 + \frac{r}{100n}} = \frac{r}{100}$	A1	1.1b
	$\lim_{n \to \infty} \left(1 + \frac{r}{100n} \right)^n = \lim_{n \to \infty} y = \lim_{n \to \infty} e^{\ln y} = e^{\lim_{n \to \infty} \ln y} = e^{\frac{r}{100}} *$	A1*	2.1
		(6)	
(c)	$\lim_{n \to \infty} \left(1 + \frac{5}{100n} \right)^n = e^{0.05}$	B1	3.4
	Therefore $\lim_{n \to \infty} 1000 \left(1 + \frac{5}{100n}\right)^n = 1000 e^{0.05}$	M1	2.2a
	Student has £1051.27 in their saving account after one year	A1	3.2a
		(3)	
		(10 n	narks)

Notes:

(a)

B1*: Using *P* = 1000, *r* = 5 and *n* = 12 to show *A* = 1051.16

(b)

M1: Taking ln's to express $\ln \left(1 + \frac{r}{100n}\right)^n = n \ln \left(1 + \frac{r}{100n}\right)$ M1: Expressing the limit as a quotient $\lim_{n \to \infty} \ln y = \lim_{n \to \infty} \frac{\ln \left(1 + \frac{r}{100n}\right)}{\frac{1}{n}}$

dM1: Applies L'Hospital's rule and attempts to differentiate both the numerator and denominator. Depends on previous method mark

A1: Correct differentiation $\lim_{n \to \infty} \left[\frac{-r_{100n^2}}{\left(1 + \frac{r}{100n}\right)} \div \frac{-1}{n^2} \right]$ simplified or un-simplified

A1: Correct answer for the limit

A1*: Fully correct proof with all mathematical notation cso

(c)

B1: Uses model and the result from part (b) $\lim_{n \to \infty} \left(1 + \frac{0.05}{n}\right)^n = e^{0.05}$

M1: Deduces that the amount will be $\lim_{n \to \infty} 1000 \left(1 + \frac{0.05}{n}\right)^n = 1000e^{0.05}$

A1: Give answer in pounds to 2 decimal places £1051.27

Question	Scheme	Marks	AOs
8(a)	$x = wt \Rightarrow \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{\mathrm{d}w}{\mathrm{d}t}t + w$	B1	1.1b
	$t\left(\frac{\mathrm{d}w}{\mathrm{d}t}t+w\right)+2t^2(wt)=wt(2t+1)$	M1	2.1
	$t^{2} \frac{dw}{dt} + tw + 2t^{3}w = 2wt^{2} + wt$ $t^{2} \frac{dw}{dt} + 2t^{3}w = 2wt^{2}$ Leading to $\frac{dw}{dt} + 2tw - 2w = 0$ *	A1*	1.1b
		(3)	
(b)	$\int \frac{1}{w} dw = 2 \int (1-t) dt$	M1	3.1a
	$\ln w = 2t - t^2 (+c)$	M1	1.1b
	Uses correct exponential and ln work to reach $w = e^{2t-t^2+c} = e^{2t-t^2}e^c = Ae^{2t-t^2}$	A1	2.1
	Displacement from <i>O</i> is given by $x = wt =$	M1	3.4
	$x = Ate^{2t - t^2} *$	A1*	2.2a
		(5)	
(c)	Uses $x = 10$ when $t = 2$ to find the value of A, $10 = 2A$ and achieves $x = 5te^{2t-t^2}$	B1	3.4
		(1)	
(d)	Sets $\frac{dx}{dt} = 0 \Rightarrow 2t^2x = x(2t+1) \Rightarrow 2t^2 = 2t+1$ or differentiates $x \Rightarrow \frac{dx}{dt} = 5e^{2t-t^2} + 5t(2-2t)e^{2t-t^2} = 0$ to form and solve a quadratic equation.	M1	3.1a
	$t = \frac{1 \pm \sqrt{3}}{2}$	A1	1.1b
	$x = 5\left(\frac{1+\sqrt{3}}{2}\right)e^{2\left(\frac{1+\sqrt{3}}{2}\right) - \left(\frac{1+\sqrt{3}}{2}\right)^2}$	dM1	1.1b
	Maximum displacement = awrt 16.2 m or 162 cm	A1	3.2a
		(4)	
(e)	$x = 5te^{2t-t^2} = 5te^{2t}e^{-t^2}$ or $\frac{5te^{2t}}{e^{t^2}}$	M1	3.4
	As $t \to \infty$, $e^{-t^2} \to 0$ or $e^{2t - t^2} \to 0$: displacement from <i>O</i> tends to 0 or $e^{t^2} \to \infty$: displacement from <i>O</i> tends to 0	A1	2.4
		(2)	
(15 mar		narks)	

(a)
B1: Correct derivative $\frac{dx}{dt}$
M1: Substitutes in their $\frac{dx}{dt}$
A1*: Completely correct proof
(b)
M1: Separates the variables correctly, with dw and dt the correct positions. M1: Integrates both sides to the form $\ln w = f(t)$ with or without +c
A1: Uses correct exponential and ln work to reach $w = e^{2t-t^2+c} = e^{2t-t^2}e^c = Ae^{2t-t^2}$ Must have + c and a correct intermediate stage.
M1: Links their equation $w = f(t)$ to the solution of the model equation correctly. For $x = t$ 'their w'
A1*: Deduces the correct general equation for the distance
(c)
B1: Uses $x = 10$ when $t = 2$ to find the correct value of <i>A</i>
(d)
M1: Sets $\frac{dx}{dt} = 0$ into the differential equation, or uses the product rule to differentiate x and sets
$\frac{dx}{dt} = 0$, to form and solve a quadratic equation.
A1: Correct value(s) for t
dM1: Dependent of previous method mark, substitutes their value of t to find a value for \underline{x} .
A1: Maximum displacement = awrt 16.2 m or 162 cm
(e)
M1: Using the model, separates the exponential terms
A1: Reason \therefore displacement from <i>O</i> tends to 0

Question	Scheme	Marks	AOs
9(a)	$\frac{a}{e} = \frac{8}{3}\sqrt{3}$	B1	3.4
	Uses $a = 2b$ and $b^2 = a^2(1 - e^2)$ Either $b^2 = 4b^2(1 - e^2)$ or $\frac{a^2}{4} = a^2(1 - e^2)$	M1	3.1a
	Either $\frac{1}{4} = 1 - e^2$ then $e = \frac{\sqrt{3}}{2}$ so $a = \left(\frac{\sqrt{3}}{2}\right) \left(\frac{8}{3}\sqrt{3}\right)$ or $e = \frac{3}{8\sqrt{3}} = \frac{a\sqrt{3}}{8}$ then $\frac{1}{4} = \left(1 - \frac{3a^2}{64}\right)$ leading to $a = \dots$	M1	2.1
	a = 4	A1	1.1b
	$b = \frac{a}{2} = 2$ and $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	M1	1.1b
	$\frac{x^2}{16} + \frac{y^2}{4} = 1$	A1	1.1b
		(6)	
(b)	Foci ($\pm ae, 0$), $x = 4\left(\frac{\sqrt{3}}{2}\right) = 2\sqrt{3}$	M1	3.1b
	Water features at $(2\sqrt{3}, 0)$ and $(-2\sqrt{3}, 0)$	A1	3.4
		(2)	
(c)	Uses $PS = ePN$, leading to $2 = \frac{\sqrt{3}}{2} PN$	M1	3.4
	$PN = \frac{4}{\sqrt{3}} = \frac{4}{3}\sqrt{3}$	A1	1.1b
	$x = \frac{8}{3}\sqrt{3} - \frac{4}{3}\sqrt{3} = \frac{4}{3}\sqrt{3}$	M1	1.1b
	$\frac{\left(\frac{4}{3}\sqrt{3}\right)^2}{16} + \frac{y^2}{4} = 1 \text{ leading to a value for } y$	M1	1.1b
	Uses symmetry to find all 4 points $\left(\frac{4}{3}\sqrt{3}, \frac{2}{3}\sqrt{6}\right), \left(\frac{4}{3}\sqrt{3}, -\frac{2}{3}\sqrt{6}\right), \left(-\frac{4}{3}\sqrt{3}, \frac{2}{3}\sqrt{6}\right) \text{ and } \left(-\frac{4}{3}\sqrt{3}, -\frac{2}{3}\sqrt{6}\right)$	A1	3.4
		(5)	

Alternative 9(c) Solves $(x - 2\sqrt{3}')^2 + y^2 = 4$ or $(x + 2\sqrt{3}')^2 + y^2 = 4$ with the equation of their ellipse and follow through on their foci to find a value of x or y	M1	3.4	
Any correct value of <i>x</i> or <i>y</i>	A1	1.1b	
Uses symmetry to find another value of x or y or Solves $(x - 2\sqrt{3'})^2 + y^2 = 4$ and $(x + 2\sqrt{3'})^2 + y^2 = 4$ with the equation of their ellipse and follow through on their foci to find a value of x or y	M1	1.1b	
Finds a complete point	M1	1.1b	
Finds all 4 points $\left(\frac{4}{3}\sqrt{3}, \frac{2}{3}\sqrt{6}\right), \left(\frac{4}{3}\sqrt{3}, -\frac{2}{3}\sqrt{6}\right), \left(-\frac{4}{3}\sqrt{3}, \frac{2}{3}\sqrt{6}\right) \text{ and } \left(-\frac{4}{3}\sqrt{3}, -\frac{2}{3}\sqrt{6}\right)$	A1	3.4	
	(5)		
	(13 n	narks)	
Notes:			
 (a) B1: Using half the length equals the x coordinate of the directrix M1: Uses a = 2b and b² = a²(1 - e²) M1: For a complete method to find a value for a A1: For a = 4 M1: Finding the value for b and substituting the values of a and b into the equation of A1: Correct equation of the ellipse, must square out a and b. 	of an ellips	se	
(b)			
M1: For realising that the foci for the ellipse are required and finds <i>x</i> -coordinate of focus $x = ae$ A1: Finds both coordinates for the water features			
 (c) M1: Uses focus directrix property with PS = 2 and their value for e A1: Correct distance for PN M1: Using x = directrix - PN 			

M1: Substitutes value for x into their equation of the ellipse to find a value for y

A1: All 4 correct points

(c) Alternative

M1: Solves simultaneously their equation of the ellipse and a circle with centre ('their foci', 0) and radius 2. Finds at least one value for x or y

A1: A correct value of $x = \pm \frac{4}{3}\sqrt{3}$ or $y = \pm \frac{2}{3}\sqrt{6}$

M1: Or uses symmetry to find another values of x or y. Or solves simultaneously their equation of the ellipse and both circles with centre ('their foci', 0) and radius 2. Finds at least one value of x or y. M1: Finds a complete coordinate

A1: All 4 correct points