Ques	tion					Scheme				Marks	AOs
1						Step 0.5				B1	1.1b
		x y	$\begin{array}{c} y_0 \\ 1 \\ \sqrt{2} \end{array}$	$\frac{y_1}{1.5}$ $\sqrt{4.375}$	$\frac{y_2}{2}$	$\frac{y_3}{2.5}$ $\sqrt{16.625}$	$\frac{y_4}{3}$	$\frac{y_5}{3.5}$ $\sqrt{43.875}$	$\frac{y_6}{4}$ $\sqrt{65}$	M1	1.1b
			J	$y_0 + 4y_1 + 2$	$2y_2 + 4$	$4y_3 + 2y_4 + 4$	$4y_5 + y_6$	="77.23"	<u> </u>	M1	1.1b
				\int_{1}^{1}	$4\sqrt{1+1}$	$\overline{x^3}$ dx $\approx \frac{0.5}{3} \times$	"77.23	"		M1	1.1b
						= 12.9				A1	1.1b
										(5)	
										(5 n	narks)
Notes	s:										
B1: M1:		of step npt to	•		h at le	east 2 correc	t				
M1:	Use	of formula " $y_0 + 4y_1 + 2y_2 + 4y_3 + 2y_4 + 4y_5 + y_6$ " with correct coeffic						cients			
A1:	$\frac{0.5}{3}$	< their	77.23								
A1:	awrt	12.9									

Paper 3A: Further Pure Mathematics 1 Mark Scheme

Question	Scheme	Marks	AOs			
2	$y = x^3 e^{kx}$ so $u = x^3$ and					
	$\frac{\mathrm{d}u}{\mathrm{d}x} = 3x^2$ and $\frac{\mathrm{d}^2 u}{\mathrm{d}x^2} = 6x$ and $\frac{\mathrm{d}^3 u}{\mathrm{d}x^3} = 6$ (and $\frac{\mathrm{d}^4 u}{\mathrm{d}x^4} = 0$)	M1	1.1b			
	$v = e^{kx}$ and $\frac{d^n v}{dx^n} = k^n e^{kx}$ and $\frac{d^{n-1} v}{dx^{n-1}} = k^{n-1} e^{kx}$ and $\frac{d^{n-2} v}{dx^{n-2}} = k^{n-2} e^{kx}$					
	(and)					
	$\frac{d^{n}y}{dx^{n}} = x^{3}k^{n}e^{kx} + n3x^{2}k^{n-1}e^{kx} + \frac{n(n-1)}{2}6xk^{n-2}e^{kx} + \frac{n(n-1)(n-2)}{3!}6k^{n-3}e^{kx}$	M1	2.1			
	and remaining terms disappear					
	So $\frac{d^n y}{dx^n} = k^{n-3}e^{kx} \left(k^3 x^3 + 3nk^2 x^2 + 3n(n-1)kx + n(n-1)(n-2)\right) *$	A1*	1.1b			
		(4)				
		(4 n	narks)			
Notes:						
M1: Diff	11: Differentiate $u = x^3$ three times					
M1: Use	Use $u = e^{kx}$ and establish the form of the derivatives, with at least the three shown					

M1: Uses correct formula, with 2 and 3! (or 6) and with terms shown to disappear after the fourth term

A1*: Correct solution leading to the given answer stated. No errors seen

Question	Scheme	Marks	AOs
3(a)	Use of $x = tv$ to give $\frac{dx}{dt} = v + t \frac{dv}{dt}$	M1	1.1b
	Hence $\frac{d^2x}{dt^2} = \frac{dv}{dt} + \frac{dv}{dt} + t\frac{d^2v}{dt^2}$	M1	2.1
	Hence $\frac{dt^2}{dt^2} = \frac{dt}{dt} + \frac{dt}{dt} + t\frac{dt^2}{dt^2}$	A1	1.1b
	Uses t^2 (their 2 nd derivative) – $2t$ (their 1 st derivative) + $(2 + t^2)x = t^4$ and simplifies LHS	M1	2.1
	$\left(t^3 \frac{d^2 v}{dt^2} + t^3 v = t^4 \text{ leading to}\right) \frac{d^2 v}{dt^2} + v = t *$	A1*	1.1b
		(5)	
(b)	Solve $\lambda^2 + 1 = 0$ to give $\lambda^2 = -1$	M1	1.1b
	$v = A\cos t + B\sin t$	A1ft	1.1b
	Particular Integral is $v = kt + l$	B1	2.2a
	$\frac{\mathrm{d}v}{\mathrm{d}t} = k$ and $\frac{\mathrm{d}^2 v}{\mathrm{d}t^2} = 0$ and solve $0 + kt + l = t$ to give $k = 1, l = 0$	M1	1.1b
	Solution: $v = A\cos t + B\sin t + t$	A1	1.1b
	Displacement of C from O is given by $x = tv =$	M1	3.4
	$x = t \left(A \cos t + B \sin t + t \right)$	A1	2.2a
		(7)	
(c)(i)	For large <i>t</i> , the displacement gets very large (and positive)	B1	3.2a
(ii)	Model suggests midpoint of spring moving relative to fixed point has large displacement when t is large, which is unrealistic. The spring may reach elastic limit / will break	B1	3.5a
		(2)	
		(14 n	narks)

Quest	tion 3 notes:
(a)	
M1:	Uses product rule to obtain first derivative
M1:	Continues to differentiate again, with product rule and chain rule as appropriate, in order to establish the second derivative
A1:	Correct second derivative. Accept equivalent expressions
M1:	Shows clearly the substitution into the given equation in order to form the new equation and gathers like terms
A1*:	Fully correct solution leading to the given answer
(b)	Accept variations on symbols for constants throughout
M1:	Form and solve a quadratic Auxiliary Equation
A1ft:	Correct form of the Complementary Function for their solutions to the AE
B1:	Deduces the correct form for the Particular Integral (note $v = mt^2 + kt + l$ is fine)
M1:	Differentiates their Particular Integral and substitutes their derivatives into the equation to find the constants ($m = 0$ if used)
A1:	Correct general solution for equation (II)
M1:	Links the solution to equation (II) to the solution of the model equation correctly to find the displacement equation
A1:	Deduces the correct general solution for the displacement
(c)(i)	
B1:	States that for large t the displacement is large o.e. Accept e.g. as $t \to \infty$, $x \to \infty$
(c)(ii)	
B1:	Reflect on the context of the original problem. Accept 'model unrealistic' / 'spring will break'

Quest	ion Scheme	Marks	AOs
4(a)	$y'' = 2xy' - y \Longrightarrow y''' = 2xy'' + 2y' - y'$	M1	1.1b
	$y = 2xy - y \longrightarrow y = 2xy + 2y - y$	A1	1.1b
	$y''' = 2xy'' + y' \Longrightarrow y'''' = 2xy''' + 2y'' + y''$	M1	2.1
	$y''' = 2xy'' + 3y'' \implies y'''' = 2xy''' + 5y'''$	A1	2.1
		(4)	
(b)	$x = 0, y = 0, y' = 1 \Rightarrow y''(0) = 0\pi$ from equation	B1	2.2a
	$y''(0) = 2 \times 0 \times y''(0) + 1 = 1; y'''(0) = 2 \times 0 \times 1 + 3 \times 0 = 0;$	M1	1.1b
	$x = 0, y''(0) = 1, y'''(0) = 0 \Longrightarrow y''''(0) = 5$	A1	1.1b
	$y = y(0) + y'(0)x + \frac{y''(0)}{2}x^2 + \frac{y'''(0)}{6}x^3 + \frac{y'''(0)}{24}x^4 + \frac{y''''(0)}{120}x^5 + \dots$	M1	2.5
	Series solution: $y = x + \frac{1}{6}x^3 + \frac{1}{24}x^5 +$	A1ft	1.1b
		(5)	
		(9 n	narks)
Notes	E		
(a) M1: A1: M1:	Attempts to differentiate equation with use of the product rule cao. Accept if terms all on one side Continues the process of differentiating to progress towards the goal. Term	s mav be k	cept on
	one side, but an expression in the fourth derivative should be obtained	2	1
A1:	Completes the process to reach the fifth derivative and rearranges to the co obtain the correct answer by correct solution only	rrect form	to
(b)			
B1:	Deduces the correct value for $y''(0)$ from the information in the question		
M1:	Finds the values of the derivatives at the given point		
A1:	All correct		
M1: A1ft:	Correct mathematical language required with given denominators. Can be correct series, must start $y = \dots$ Follow through the values of their derivative.		form

Question	Scheme	Marks	AOs
5	$y^2 = 4ax \Longrightarrow 2y \frac{dy}{dx} = 4a$	M1	2.1
	$\frac{dy}{dx} = \frac{2a}{y} \Rightarrow$ Gradient of normal is $\frac{-y}{2a} = -p$	A1	1.1b
	Equation of normal is : $y - 2ap = -p(x - ap^2)$	M1	1.1b
	Normal passes through $Q(aq^2, 2aq)$ so $2aq + apq^2 = 2ap + ap^3$	M1	3.1a
	Grad $OP \times$ Grad $OQ = -1 \Rightarrow \frac{2ap}{ap^2} \frac{2aq}{aq^2} = -1$	M1	2.1
	$q = \frac{-4}{p}$	A1	1.1b
	$2a\left(\frac{-4}{p}\right) + ap\left(\frac{16}{p^2}\right) = 2ap + ap^3 \Longrightarrow p^4 + 2p^2 - 8 = 0$	M1	2.1
	$(p^2-2)(p^2+4) = 0 \implies p^2 =$	M1	1.1b
	Hence (as $p^2 + 4 \neq 0$), $p^2 = 2^*$	A1*	1.1b
		(9)	
	Alternative 1	M1	2.1
	First three marks as above and then as follows	A1	1.1b
		M1	1.1b
	Solves $y^2 = 4ax$ and their normal simultaneously to find, in terms of <i>a</i> and <i>p</i> , either $x_Q \left(=ap^2 + 4a + \frac{4a}{p^2}\right)$ or $y_Q \left(=-2ap - \frac{4a}{p}\right)$	M1	3.1a
	Finds the second coordinate of Q in terms of a and p	M1	1.1b
	Both $x_Q = ap^2 + 4a + \frac{4a}{p^2}$ and $y_Q = -2ap - \frac{4a}{p}$	A1	1.1b
	Grad $OP \times$ Grad $OQ = -1 \Rightarrow \frac{2ap}{ap^2} \times \frac{-2ap - \frac{4a}{p}}{ap^2 + 4a + \frac{4a}{p^2}} = -1$	M1	2.1
	Simplifies expression and solves: $4p^2 + 8 = p^4 + 4p^2 + 4$ $\Rightarrow p^4 - 4 = 0 \Rightarrow (p^2 - 2)(p^2 + 2) = 0 \Rightarrow p^2 =$	M1	2.1
	Hence (as $p^2 + 2 \neq 0$), $p^2 = 2^*$	A1*	1.1b
		(9)	

Quest	ion Scheme	Marks	AOs			
5	Alternative 2	M1	2.1			
	First three marks as above and then as follows	A1	1.1b			
		M1	1.1b			
	Solves $y^2 = 4ax$ and their normal simultaneously to find, in terms					
	of <i>a</i> and <i>p</i> , either $x_Q \left(= ap^2 + 4a + \frac{4a}{p^2} \right)$ or $y_Q \left(= -2ap - \frac{4a}{p} \right)$	M1	3.1a			
	Forms a relationship between <i>p</i> and <i>q</i> from their first coordinate: either $y_Q = 2a\left(-p - \frac{2}{p}\right) \Rightarrow q = -p - \frac{2}{p}$ or $x_Q = a\left(p + \frac{2}{p}\right)^2 \Rightarrow q = \pm \left(p + \frac{2}{p}\right)$	M1	2.1			
	$q = -p - \frac{2}{p}$ (if <i>x</i> coordinate used the correct root must be clearly identified before this mark is awarded)	A1	1.1b			
	Grad $OP \times$ Grad $OQ = -1 \Rightarrow \frac{2ap}{ap^2} \times \frac{2aq}{aq^2} = -1 \left(\Rightarrow q = -\frac{4}{p} \right)$	M1	2.1			
	Sets $q = -p - \frac{2}{p} = -\frac{4}{p}$ and solves to give $p^2 =$	M1	1.1b			
	Hence $\left(\text{as } q = p + \frac{2}{p} = -\frac{4}{p} \text{ gives no solution} \right), p^2 = 2 \text{ (only)}^*$	A1*	1.1b			
		(9)				
		(9 n	narks)			
Notes						
(a) M1:	Begins proof by differentiating and using the perpendicularity condition a order to find the equation of the normal	t point <i>P</i> in	n			
A1:	Correct gradient of normal, $-p$ only					
M1:	Use of $y - y_1 = m(x - x_1)$. Accept use of $y = mx + c$ and then substitute to find C					
M1: M1:	Substitute coordinates of <i>Q</i> into their equation to find an equation relating <i>p</i> and <i>q</i> Use of $m_1m_2 = -1$ with <i>OP</i> and <i>OQ</i> to form a second equation relating <i>p</i> and <i>q</i>					
A1:	$q = \frac{-4}{p}$ only					
M1:	Solves the simultaneous equations and cancels a from their results to obtain a quadratic					

equation in p^2 only

M1: Attempts to solve their quadratic in p^2 . Usual rules

A1*: Correct solution leading to given answer stated. No errors seen

Question 5 notes continued:

Alternative 1:

M1A1M1	: As main scheme
M1:	Solves $y^2 = 4ax$ and their normal simultaneously to find one of the coordinates
	for Q in terms of a and p as shown
M1:	Finds the second coordinate of Q in terms of a and p
A1:	Both coordinates correct in terms of a and p
M1:	Use of $m_1m_2 = -1$ with <i>OP</i> and <i>OQ</i> . i.e. $\frac{2ap}{ap^2} \times \frac{\text{their } y_Q}{\text{their } x_Q} = -1$ with coordinates
	of P and their expressions for x_Q and y_Q
M1:	Cancels the <i>a</i> 's, simplifies to a quadratic in p^2 and solves the quadratic. Usual
	rules
A1*:	Correct solution leading to the given answer stated. No errors seen
Alternati	ve 2:
M1A1M1	: As main scheme
M1:	Solves $y^2 = 4ax$ and their normal simultaneously to find one of the coordinates for
	Q in terms of a and p as shown
2.54	
M1:	Uses their coordinate to form a relationship between p and q. Allow $q = \left(p + \frac{2}{p}\right)$
	for this mark
A1:	For $q = -p - \frac{2}{p}$. If the <i>x</i> coordinate was used to find <i>q</i> then consideration of the
	negative root is needed for this mark. Allow for $q = \pm \left(p + \frac{2}{p}\right)$
M1:	Use of $m_1m_2 = -1$ with <i>OP</i> and <i>OQ</i> to form a second equation relating <i>p</i> and <i>q</i> only
M1:	Equates expressions for q and attempts to solve to give $p^2 = \dots$
A1*:	Correct solution leading to the given answer stated. No errors seen. If x coordinate used, invalid solution must be rejected

Question	Scheme	Marks	AOs
6(a)	$\mathbf{AB} \times \mathbf{AC} = \begin{pmatrix} -1 \\ -1 \\ -1 \\ -1 \end{pmatrix} \times \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} -2 - 1 \\ -1 + 2 \\ 1 + 1 \end{pmatrix} = \begin{pmatrix} -3 \\ 1 \\ 2 \end{pmatrix}$	M1	1.1b
	$\mathbf{r} \cdot \begin{pmatrix} -3\\1\\2 \end{pmatrix} = \begin{pmatrix} 0\\1\\0 \end{pmatrix} \cdot \begin{pmatrix} -3\\1\\2 \end{pmatrix} = 1$	M1	1.1b
	Hence $-3x + y + 2z = 1$	A1	1.1b
		(3)	
(b)	Volume of Tetrahedron = $\frac{1}{6} \mathbf{n}. (\mathbf{A}\mathbf{D}) $	M1	3.1a
	$= \frac{1}{6} \begin{vmatrix} -3\\1\\2 \end{vmatrix} \cdot \begin{pmatrix} 10\\5\\5 \end{pmatrix} - \begin{pmatrix} 1\\2\\1 \end{pmatrix} \end{vmatrix}$	M1	1.1b
	$=\frac{1}{6} (-27+3+8) = \frac{8}{3}$	A1	1.1b
		(3)	
(c)	AE = kAC so E is $(1+k, 2-k, 1+2k)$	M1	3.1a
	<i>E</i> lies on plane so $2(1+k)-3(2-k)+3=0$, leading to $k =$	M1	3.1a
	Hence $k = \frac{1}{5}$	A1	1.1b
		(3)	
(d)	Volume $ABEF = \frac{1}{6} (\mathbf{AB} \times \mathbf{AE}) \cdot \mathbf{AF} = \frac{1}{6} (\mathbf{AB} \times \frac{1}{5} \mathbf{AC}) \cdot \frac{1}{9} \mathbf{AD}$	M1	3.1a
	$=\frac{1}{45}\left(\frac{1}{6}(\mathbf{AB}\times\mathbf{AC})\cdot\mathbf{AD}\right) \text{ and hence result }*$	A1*	2.2a
		(2)	
		(11 ו	narks)

Ques	tion 6 notes:
(a)	
M1:	Attempting a suitable cross product. Accept use of unit vectors
M1:	Complete method that would lead to finding the Cartesian equation of plane
A1:	Accept any equivalent form
(b)	
M1:	Identifies suitable vectors and attempts to substitute into a correct formula. Accept use of unit vectors
M1:	Correct form of scalar triple product using their n from part (a)
A1:	$\frac{8}{3}$ or exact equivalent form
(c)	
M1:	Uses that E is on AC in order to find an expression for E
M1:	Uses that E is in the plane Π to form and solve an expression in k
A1:	$\frac{1}{5}$ o.e. only
(d)	
M1:	Uses formula for volume of tetrahedron and substitutes for AE and AF
A1*:	Deduces result: Use of $\frac{1}{6}(AB \times AC)$. AD is required and no errors seen in solution

Quest	ion Scheme	Marks	AOs			
7	$x^{2} + 4y^{2} = 4 \implies 2x + 8y \frac{dy}{dx} = 0 \implies \frac{dy}{dx} = \dots$	M1	3.1a			
	Equation of tangent at $P(x_1, y_1)$ is $(y - y_1) = -\frac{x_1}{4y_1}(x - x_1)$		3.1a			
	$xx_1 + 4yy_1 = x_1^2 + 4y_1^2 = 4$ and at $Q(x_2, y_2)$: $xx_2 + 4yy_2 = 4$		2.2a			
	Intersect at (r, s) gives $rx_1 + 4sy_1 = 4$ and $rx_2 + 4sy_2 = 4$	B1	2.1			
	Uses their previous results to find the gradient of the line <i>l</i>	M1	3.1a			
	$\frac{y_2 - y_1}{x_2 - x_1} = \frac{-r}{4s}$	A1	1.1b			
	Equation of <i>l</i> is $y - y_1 = \frac{-r}{4s}(x - x_1)$	M1	2.1			
	$4sy + rx = 4sy_1 + rx_1 = 4*$	A1*	2.2a			
		(8)				
		(8 n	narks)			
Notes		d	12			
M1:	Attempts to solve the problem by using differentiation to obtain an expre	ession for $\frac{d}{d}$	$\frac{y}{x}$			
M1:	Realise the need to form a general equation of the tangent at (x_1, y_1) . Ma variables	y use altern	ative			
A1:	Deduces $x_1^2 + 4y_1^2 = 4$ to obtain a correct equation and deduces a correct	second equ	ation			
B1:	Uses (r, s) in both equations to form the two given equations or exact eq	uivalents				
M1:	Uses their previous results to find the gradient of the line l					
A1:	$\frac{-r}{4s}$					
M1:	Formulates the line <i>l</i> with their $\frac{-r}{4s}$. Use of $y - y_1 = m(x - x_1)$ or $y = mx + c$ with their					
	gradient and an attempt to find C					
A1*:	Correct solution leading to $4sy + rx = 4sy_1 + rx_1$ with deduction that this e	equals 4 as				
	(x_1, y_1) is on the ellipse. No errors seen					

Question	Scheme	Marks	AOs
8(a)	$h(x) = 45 + 15\sin x + 21\sin\left(\frac{x}{2}\right) + 25\cos\left(\frac{x}{2}\right)$		
	$\frac{\mathrm{dh}}{\mathrm{d}x} = 15\cos x + \frac{21}{2}\cos\left(\frac{x}{2}\right) - \frac{25}{2}\sin\left(\frac{x}{2}\right)$	M1	1.1b
	$\frac{dh}{dx} = \dots + \dots \frac{1 - t^2}{1 + t^2} - \dots \frac{2t}{1 + t^2}$	M1	1.1a
	e.g. $\frac{dh}{dx} =\left(2\left(\frac{1-t^2}{1+t^2}\right)^2 - 1\right) +$ or $\frac{dh}{dx} =\frac{1-\left(\frac{2t}{1-t^2}\right)^2}{1+\left(\frac{2t}{1-t^2}\right)^2} +$	M1	3.1a
	e.g. $\frac{dh}{dx} = 15\left(2\left(\frac{1-t^2}{1+t^2}\right)^2 - 1\right) + \frac{21}{2}\left(\frac{1-t^2}{1+t^2}\right) - \frac{25}{2}\left(\frac{2t}{1+t^2}\right)$	A1	1.1b
	$\dots = \frac{15[4(1-t^2)^2 - 2(1+t^2)^2] + 21(1-t^2)(1+t^2) - 50t(1+t^2)}{2(1+t^2)^2} \mathbf{x}$	M1	2.1
	$\dots = \frac{9t^4 - 50t^3 - 180t^2 - 50t + 51}{2(1+t^2)^2} = \frac{(t^2 - 6t - 17)(9t^2 + 4t - 3)}{2(1+t^2)^2} *$	A1*	2.1
		(6)	
	8(a) Alternative h(x) = + 21 $\left(\frac{2t}{1+t^2}\right)$ + 25 $\left(\frac{1-t^2}{1+t^2}\right)$	M1	1.1a
	$= \dots + 15 \left[2 \left(\frac{2t}{1+t^2} \right) \left(\frac{1-t^2}{1+t^2} \right) \right] + \dots \text{or} = \dots + 15 \left(\frac{2 \left(\frac{2t}{1-t^2} \right)}{1 + \left(\frac{2t}{1-t^2} \right)^2} \right) + \dots$	M1	2.1
	$h(x) = 45 + \frac{15(4t(1-t^2)) + 42t(1+t^2) + 25(1-t^4)}{(1+t^2)^2}$	M1	1.1b
	h(x) = 45 - $\frac{25t^4 + 18t^3 - 102t - 25}{(1+t^2)^2}$ or $\frac{20t^4 - 18t^3 + 90t^2 + 102t + 70}{(1+t^2)^2}$	A1	1.1b
	$\frac{dh}{dx} = \frac{dh}{dt} \times \frac{dt}{dx} = \frac{('u')(1+t^2)^2 - ('u')(4t(1+t^2))}{(1+t^2)^4} \times \frac{1}{4}(1+t^2)$	M1	3.1a
	$\dots = \frac{9t^4 - 50t^3 - 180t^2 - 50t + 51}{2(1+t^2)^2} = \frac{(t^2 - 6t - 17)(9t^2 + 4t - 3)}{2(1+t^2)^2} *$	A1*	2.1
		(6)	

Question	Scheme	Marks	AOs
8(b)(i)	Accept any value between $\frac{1}{40} = 0.025$ and $\frac{1}{60} \approx 0.167$ inclusive	B1	3.3
(ii)	Suitable for times since the graphs both oscillate bi-modally with about the same periodicity	B1	3.4
	Not suitable for predicting heights since the heights of the peaks vary over time, but the graph of $h(x)$ has fixed peak height	B1	3.5b
		(3)	
8(c)	Solves at least one of the quadratics $t = \frac{6 \pm \sqrt{36 - 4 \times 1 \times 17}}{2} = 3 \pm \sqrt{26}$ or $t = \frac{-4 \pm \sqrt{16 - 4 \times 9 \times (-3)}}{18} = \frac{-2 \pm \sqrt{31}}{9}$	M1	1.1b
	Finds corresponding x values, $x = 4 \tan^{-1}(t)$ for at least one value of t from the $9t^2 + 4t - 3$ factor	M1	1.1b
	One correct value for these x e.g. $x = awrt - 2.797$ or 9.770,1.510	A1	1.1b
	Maximum peak height occurs at smallest positive value of x, from first graph, but the third of these peaks needed, So $t = 1.509 + 8\pi = 26.642$ is the is the required time	M1	3.4
	x = 26.642 corresponds to 26 hours and 39 minutes (nearest minute) after 08:00 on 3rd January (Allow if a different greatest peak height used)	M1	3.4
	Time of greatest tide height is approximately 10:39 (am) (also allow 10:38 or 10:40)	A1	3.2a
		(6)	
		(15 n	narks)
M1: App	Therentiates $h(x)$ lies <i>t</i> -substitution to both $\left(\frac{x}{2}\right)$ terms with their coefficients ns a correct expression in <i>t</i> for the cos <i>x</i> term, using double angle form		

A1: Fully correct expression in t for
$$\frac{dh}{dx}$$

- M1: Gets all terms over the correct common factor. Numerators must be appropriate for their terms
- A1*: Achieves the correct answer via expression with correct quartic numerator before factorisation

Quest	ion 8 notes continued:
Altern	ative:
(a)	
M1:	Applies <i>t</i> -substitution to both $\left(\frac{x}{2}\right)$ terms
M1:	Forms a correct expression in t for the sin x term, using double angle formula and t -substitution, or double 't'-substitution
M1:	Gets all terms in <i>t</i> over the correct common factor. Numerators must be appropriate for their terms. May include the constant term too
A1:	Fully correct expression in t for $h(x)$
M1: A1*:	Differentiates, using both chain rule and quotient rule with their ' u ' Achieves the correct answer via expression with correct quartic numerator before
	factorisation The individual terms may be differentiated before putting over a common denominator. In this case score the third M for differentiating with chain rule and quotient rule, then r return to the original scheme
(b)(i)	<u> </u>
B1:	Any value between $\frac{1}{40}$ (e.g. taking h(0) as reference point) or $\frac{1}{60}$ (taking lower peaks
	as reference)
NB:	Taking high peak as reference gives $\frac{1}{50}$
	50
(b)(ii) B1:	Should mention both the bimodal nature and periodicity for the actual data match the graph of h
B1:	Mentions that the heights of peaks vary in each oscillation
(c) M1: M1:	Solves (at least) one of the quadratic equations in the numerator Must be attempting to solve the quadratic factor from which the solution comes
	$9t^2 + 4t - 3$ and using $t = tan\left(\frac{x}{4}\right)$ to find a corresponding value for x
A1:	At least one correct <i>x</i> value from solving the requisite quadratic: awrt any of – 2.797, 1.510, 9.770, 14.076, 22.336, 26.642, 34.902 or 39.208
M1:	Uses graph of h to pick out their $x = 26.642$ as the time corresponding to the third of the higher peaks, which is the highest of the peaks on 4th January on the tide height graph. As per scheme or allow if all times listed and correct one picked
M1:	Finds the time for one of the values of <i>t</i> corresponding to the highest peaks. E.g. 1.5096~09:31 (3rd January) or 14.076~22:05 (3rd January) or 26.642~10:39 (4th January) or 39.208~23:13 (4th January). (Only follow through on use of the smallest positive <i>t</i> solution $+ 4k\pi$)
A1:	Time of greatest tide height on 4th January is approximately 10:39. Also allow 10:38 or 10:40