Quest	on Scheme	Marks	AOs
1(i)	$\alpha + \beta + \gamma = 8$, $\alpha\beta + \beta\gamma + \gamma\alpha = 28$, $\alpha\beta\gamma = 32$	B1	3.1a
	$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\beta\gamma + \alpha\gamma + \alpha\beta}{\alpha\beta\gamma}$	M1	1.1b
	$=\frac{7}{8}$	A1ft	1.1b
		(3)	
(ii)	$(\alpha+2)(\beta+2)(\gamma+2) = (\alpha\beta+2\alpha+2\beta+4)(\gamma+2)$	M1	1.1b
	$= \alpha\beta\gamma + 2(\alpha\beta + \alpha\gamma + \beta\gamma) + 4(\alpha + \beta + \gamma) + 8$	A1	1.1b
	= 32 + 2(28) + 4(8) + 8 = 128	A1	1.1b
		(3)	
	Alternative:		
	$(x-2)^{3}-8(x-2)^{2}+28(x-2)-32=0$	M1	1.1b
	$= \dots - 8 + \dots - 32 + \dots - 56 - 32 = -128$	A1	1.1b
	$\therefore (\alpha+2)(\beta+2)(\gamma+2) = 128$	A1	1.1b
		(3)	
(iii)	$\alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \alpha\gamma + \beta\gamma)$	M1	3.1a
	$=8^2-2(28)=8$	Alft	1.1b
		(2)	
		(8 n	narks)
Notes:			
(i) B1:	dentifies the correct values for all 3 expressions (can score anywhere)		
	Uses a correct identity		
A1ft:	Correct value (follow through their 8, 28 and 32)		
(ii)			
	Attempts to expand		
	Correct expansion Correct value		
AI: Altern			
	Substitutes $x - 2$ for x in the given cubic		
A1:	Calculates the correct constant term		
	Changes sign and so obtains the correct value		
(iii)	Fatablishes the compatidantity		
	Establishes the correct identity		
A1ft:	Correct value (follow through their 8, 28 and 32)		

Paper 2: Core Pure Mathematics 2 Mark Scheme

Question	Scheme	Marks	AOs
2(a)	$\begin{pmatrix} 3 \\ -4 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 6 \\ 2 \\ 12 \end{pmatrix} = 18 - 8 + 24$	M1	3.1a
	$d = \frac{18 - 8 + 24 - 5}{\sqrt{3^2 + 4^2 + 2^2}}$	M1	1.1b
	$=\sqrt{29}$	A1 (3)	1.1b
(b)	$\begin{pmatrix} -1 \\ -3 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix} = \dots \text{ and } \begin{pmatrix} -1 \\ -3 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix} = \dots$	M1	2.1
	$\begin{pmatrix} -1 \\ -3 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix} = 0 \text{ and } \begin{pmatrix} -1 \\ -3 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix} = 0$ $\therefore -\mathbf{i} - 3\mathbf{j} + \mathbf{k} \text{ is perpendicular to } \Pi_2$	A1	2.2a
	$\dots -1 - 3\mathbf{j} + \mathbf{k}$ is perpendicular to 112	(2)	
(c)	$\begin{pmatrix} -1 \\ -3 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -4 \\ 2 \end{pmatrix} = -3 + 12 + 2$	M1	1.1b
	$\sqrt{(-1)^{2} + (-3)^{2} + 1^{2}} \sqrt{(3)^{2} + (-4)^{2} + 2^{2}} \cos \theta = 11$ $\Rightarrow \cos \theta = \frac{11}{\sqrt{(-1)^{2} + (-3)^{2} + 1^{2}} \sqrt{(3)^{2} + (-4)^{2} + 2^{2}}}$	M1	2.1
	So angle between planes $\theta = 52^{\circ} *$	A1*	2.4
		(3)	
Notes:		(8	marks)
(a) M1: Rea pos M1: Cor	Realises the need to and so attempts the scalar product between the normal and the position vector Correct method for the perpendicular distance Correct distance		
dire	Recognises the need to calculate the scalar product between the given vector and both direction vectors		
(c) M1: Cal M1: Apj A1*: Ider	Obtains zero both times and makes a conclusion Calculates the scalar product between the two normal vectors Applies the scalar product formula with their 11 to find a value for $\cos \theta$ Identifies the correct angle by linking the angle between the normal and the angle between the planes		

Question	Scheme	Marks	AOs
3(i)(a)	$ \mathbf{M} = 2(1+2) - a(-1-1) + 4(2-1) = 0 \Rightarrow a =$	M1	2.3
	The matrix M has an inverse when $a \neq -5$	A1	1.1b
		(2)	
(b)	Minors: $\begin{pmatrix} 3 & -2 & 1 \\ -a-8 & 2 & a+4 \\ 4-a & -6 & -2-a \end{pmatrix}$ or Cofactors: $\begin{pmatrix} 3 & 2 & 1 \\ a+8 & 2 & -a-4 \\ 4-a & 6 & -2-a \end{pmatrix}$	B1	1.1b
	$\mathbf{M}^{-1} = \frac{1}{ \mathbf{M} } \operatorname{adj}(\mathbf{M})$	M1	1.1b
	$\mathbf{M}^{-1} = \frac{1}{2a+10} \begin{pmatrix} 3 & a+8 & 4-a \\ 2 & 2 & 6 \\ 1 & -a-4 & -2-a \end{pmatrix} \xrightarrow{2 \text{ correct rows or columns. Follow through their det } \mathbf{M}$	A1ft	1.1b
	$2a+10 \begin{pmatrix} 1 & -a-4 & -2-a \end{pmatrix}$ All correct. Follow through their det M	A1ft	1.1b
		(4)	
(ii)	When $n = 1$, lhs = $\begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}$, rhs = $\begin{pmatrix} 3^1 & 0 \\ 3(3^1 - 1) & 1 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}$ So the statement is true for $n = 1$	B1	2.2a
	Assume true for $n = k$ so $\begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}^k = \begin{pmatrix} 3^k & 0 \\ 3(3^k - 1) & 1 \end{pmatrix}$	M1	2.4
	$ \begin{bmatrix} 3 & 0 \\ 6 & 1 \end{bmatrix}^{k+1} = \begin{pmatrix} 3^k & 0 \\ 3(3^k - 1) & 1 \end{bmatrix} \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{bmatrix} $	M1	2.1
	$= \begin{pmatrix} 3 \times 3^k & 0\\ 3 \times 3(3^k - 1) + 6 & 1 \end{pmatrix}$	A1	1.1b
	$= \begin{pmatrix} 3^{k+1} & 0\\ 3(3^{k+1}-1) & 1 \end{pmatrix}$	A1	1.1b
	If the statement is true for $n = k$ then it has been shown true for $n = k + 1$ and as it is true for $n = 1$, the statement is true for all positive integers n	A1	2.4
		(6)	
		(12 n	narks)

Quest	tion 3 notes:
(i)(a)	
M1:	Attempts determinant, equates to zero and attempts to solve for a in order to establish the restriction for a
A1:	Provides the correct condition for <i>a</i> if M has an inverse
(i)(b)	
B1:	A correct matrix of minors or cofactors
M1:	For a complete method for the inverse
A1ft:	Two correct rows following through their determinant
A1ft:	Fully correct inverse following through their determinant
(ii)	
B1:	Shows the statement is true for $n = 1$
M1:	Assumes the statement is true for $n = k$
M1:	Attempts to multiply the correct matrices
A1:	Correct matrix in terms of k
A1:	Correct matrix in terms of $k + 1$
A1:	Correct complete conclusion

Question	Scheme	Marks	AOs
4(a)	$z^n + z^{-n} = \cos n\theta + i \sin n\theta + \cos n\theta - i \sin n\theta$	M1	2.1
	$=2\cos n\theta^*$	A1*	1.1b
		(2)	
(b)	$\left(z+z^{-1}\right)^4=16\cos^4\theta$	B1	2.1
	$\left(z+z^{-1}\right)^4 = z^4 + 4z^2 + 6 + 4z^{-2} + z^{-4}$	M1	2.1
	$= z^4 + z^{-4} + 4(z^2 + z^{-2}) + 6$	Al	1.1b
	$= 2\cos 4\theta + 4(2\cos 2\theta) + 6$	M1	2.1
	$\cos^4 \theta = \frac{1}{8} (\cos 4\theta + 4\cos 2\theta + 3)^*$	A1*	1.1b
		(5)	
		(7 n	narks)
Notes:			
	tifies the correct form for z^n and z^{-n} and adds to progress to	the printed answer	

A1*: Achieves printed answer with no errors

(b)

B1: Begins the argument by using the correct index with the result from part (a)

M1: Realises the need to find the expansion of $(z + z^{-1})^4$

A1: Terms correctly combined

M1: Links the expansion with the result in part (a)

A1*: Achieves printed answer with no errors

Quest	tion Scheme	Marks	AOs
5 (a	a) $\frac{\mathrm{d}y}{\mathrm{d}x} = \sin x \cosh x + \cos x \sinh x$	M1	1.1a
	$\frac{d^2 y}{dx^2} = \cos x \cosh x + \sin x \sinh x + \cos x \cosh x - \sin x \sinh x$ $(= 2\cos x \cosh x)$	M1	1.1b
	$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3} = 2\cos x \sinh x - 2\sin x \cosh x$	M1	1.1b
	$\frac{\mathrm{d}^4 y}{\mathrm{d}x^4} = -4\sinh x \sin x = -4y^*$	A1*	2.1
		(4)	
(b)	$\left(\frac{d^2 y}{dx^2}\right)_0 = 2, \ \left(\frac{d^6 y}{dx^6}\right)_0 = -8, \ \left(\frac{d^{10} y}{dx^{10}}\right)_0 = 32$	B1	3.1a
	Uses $y = y_0 + xy'_0 + \frac{x^2}{2!}y''_0 + \frac{x^3}{3!}y''_0 + \dots$ with their values	M1	1.1b
	$=\frac{x^2}{2!}(2)+\frac{x^6}{6!}(-8)+\frac{x^{10}}{10!}(32)$	A1	1.1b
	$= x^2 - \frac{x^6}{90} + \frac{x^{10}}{113400}$	A1	1.1b
		(4)	
(c)	$2(-4)^{n-1}\frac{x^{4n-2}}{(4n-2)!}$	M1 A1	3.1a 2.2a
		(2)	
		(10	marks)
Notes	5:		
(a)			
M1:	Realises the need to use the product rule and attempts first derivative		1
M1:	Realises the need to use a second application of the product rule and atte derivative	mpts the sec	cond
M1:	Correct method for the third derivative		
A1*:	Obtains the correct 4^{th} derivative and links this back to y		
(b)			
B1:	Makes the connection with part (a) to establish the general pattern of der \tilde{a}	ivatives and	l
M1:	finds the correct non-zero values		
A1:	Correct attempt at Maclaurin series with their values Correct expression un-simplified		
A1:	Correct expression and simplified		
(c)	~		
M1:	Generalising, dealing with signs, powers and factorials		
A1:	Correct expression		

Question	Scheme	Marks	AOs
6(a)(i)		M1	1.1b
	Re	A1	1.1b
(a)(ii)	$ z-4-3i = 5 \Longrightarrow x+iy-4-3i = 5 \Longrightarrow (x-4)^2 + (y-3)^2 =$	M1	2.1
	$(x-4)^2 + (y-3)^2 = 25$ or any correct form	A1	1.1b
	$(r\cos\theta - 4)^{2} + (r\sin\theta - 3)^{2} = 25$ $\Rightarrow r^{2}\cos^{2}\theta - 8r\cos\theta + 16 + r^{2}\sin^{2}\theta - 6r\sin\theta + 9 = 25$ $\Rightarrow r^{2} - 8r\cos\theta - 6r\sin\theta = 0$	M1	2.1
	$\therefore r = 8\cos\theta + 6\sin\theta *$	A1*	2.2a
		(6)	
(b)(i)	Im	B1	1.1b
	Re	B1ft	1.1b
(b)(ii)	$A = \frac{1}{2} \int r^2 d\theta = \frac{1}{2} \int (8\cos\theta + 6\sin\theta)^2 d\theta$ $= \frac{1}{2} \int (64\cos^2\theta + 96\sin\theta\cos\theta + 36\sin^2\theta) d\theta$	M1	3.1a
	$=\frac{1}{2}\int \left(32(\cos 2\theta+1)+96\sin \theta\cos \theta+18(1-\cos 2\theta)\right)d\theta$	M1	1.1b
	$=\frac{1}{2}\int (14\cos 2\theta + 50 + 48\sin 2\theta)d\theta$	A1	1.1b
	$=\frac{1}{2}\left[7\sin 2\theta + 50\theta - 24\cos 2\theta\right]_{0}^{\frac{\pi}{3}} = \frac{1}{2}\left\{\left(\frac{7\sqrt{3}}{2} + \frac{50\pi}{3} + 12\right) - \left(-24\right)\right\}$	M1	2.1
	$=\frac{7\sqrt{3}}{4}+\frac{25\pi}{3}+18$	A1	1.1b
		(7)	

Question	Scheme	Marks	AOs
	(b)(ii) Alternative:		
	Candidates may take a geometric approach e.g. by finding sector + 2 triangles		
	Angle $ACB = \left(\frac{2\pi}{3}\right)$ so area sector $ACB = \frac{1}{2}(5)^2 \frac{2\pi}{3}$ Area of triangle $OCB = \frac{1}{2} \times 8 \times 3$	M1	3.1a
	Sector area ACB + triangle area $OCB = \frac{25\pi}{3} + 12$	A1	1.1b
	Area of triangle <i>OAC</i> : Angle $ACO = 2\pi - \frac{2\pi}{3} - \cos^{-1}\left(\frac{5^2 + 5^2 - 8^2}{2 \times 5 \times 5}\right)$ so area $OAC = \frac{1}{2}(5)^2 \sin\left(\frac{4\pi}{3} - \cos^{-1}\left(\frac{-7}{25}\right)\right)$	M1	1.1b
	$= \frac{25}{2} \left(\sin \frac{4\pi}{3} \cos \left(\cos^{-1} \left(\frac{-7}{25} \right) \right) - \cos \frac{4\pi}{3} \sin \left(\cos^{-1} \left(\frac{-7}{25} \right) \right) \right)$ $= \frac{25}{2} \left(\left(\frac{7\sqrt{3}}{50} \right) + \frac{1}{2} \sqrt{1 - \left(\frac{7}{25} \right)^2} \right) = \frac{7\sqrt{3}}{4} + 6$	M1	2.1
	Total area = $\frac{25\pi}{3} + \frac{1}{2} \times 8 \times 3 + 6 + \frac{7\sqrt{3}}{4}$		
	$=\frac{7\sqrt{3}}{4}+\frac{25\pi}{3}+18$	A1	1.1b
		(13 n	1arks)

Ques	tion 6 notes:
(a)(i)	
M1:	Draws a circle which passes through the origin
A1:	Fully correct diagram
(a)(ii)	
M1:	Uses $z = x + iy$ in the given equation and uses modulus to find equation in x and y only
A1:	Correct equation in terms of x and y in any form – may be in terms of r and θ
M1:	Introduces polar form, expands and uses $\cos^2 \theta + \sin^2 \theta = 1$ leading to a polar equation
A1*:	Deduces the given equation (ignore any reference to $r = 0$ which gives a point on the curve)
(b)(i)	
B1:	Correct pair of rays added to their diagram
B1ft:	Area between their pair of rays and inside their circle from (a) shaded, as long as there is an
	intersection
(b)(ii)	
M1:	Selects an appropriate method by linking the diagram to the polar curve in (a), evidenced by
	use of the polar area formula
M1:	Uses double angle identities
A1:	Correct integral
M1:	Integrates and applies limits
A1:	Correct area
(b)(ii)	Alternative:
M1:	Selects an appropriate method by finding angle ACB and area of sector ACB and finds area
	of triangle OCB to make progress towards finding the required area
A1:	Correct combined area of sector ACB + triangle OCB
M1:	Starts the process of finding the area of triangle <i>OAC</i> by calculating angle <i>ACO</i> and attempts area of triangle <i>OAC</i>
M1:	Uses the addition formula to find the exact area of triangle OAC and employs a full correct
	method to find the area of the shaded region
A1:	Correct area

Question	Scheme	Marks	AOs
7(a)	$r = 10 \frac{\mathrm{d}f}{\mathrm{d}t} - 2f \Rightarrow \frac{\mathrm{d}r}{\mathrm{d}t} = 10 \frac{\mathrm{d}^2 f}{\mathrm{d}t^2} - 2 \frac{\mathrm{d}f}{\mathrm{d}t}$	M1	2.1
	$10\frac{d^2 f}{dt^2} - 2\frac{df}{dt} = -0.2f + 0.4\left(10\frac{df}{dt} - 2f\right)$	M1	2.1
	$\frac{d^2 f}{dt^2} - 0.6 \frac{df}{dt} + 0.1 f = 0 *$	A1*	1.1b
		(3)	
(b)	$m^2 - 0.6m + 0.1 = 0 \Longrightarrow m = \frac{0.6 \pm \sqrt{0.6^2 - 4 \times 0.1}}{2}$	M1	3.4
	$m = 0.3 \pm 0.1$ i	A1	1.1b
	$f = e^{\alpha t} \left(A \cos \beta t + B \sin \beta t \right)$	M1	3.4
	$f = e^{0.3t} \left(A \cos 0.1t + B \sin 0.1t \right)$	Al	1.1b
		(4)	
(c)	$\frac{\mathrm{d}f}{\mathrm{d}t} = 0.3\mathrm{e}^{0.3t} \left(A\cos 0.1t + B\sin 0.1t \right) + 0.1\mathrm{e}^{0.3t} \left(B\cos 0.1t - A\sin 0.1t \right)$	M1	3.4
	$r = 10\frac{df}{dt} - 2f$ = e ^{0.3t} ((3A+B)cos 0.1t + (3B-A)sin 0.1t) - 2e ^{0.3t} (A cos 0.1t + B sin 0.1t)	M1	3.4
	$r = e^{0.3t} \left((A+B)\cos 0.1t + (B-A)\sin 0.1t \right)$	A1	1.1b
		(3)	
(d)(i)	$t = 0, f = 6 \Rightarrow A = 6$	M1	3.1b
	$t = 0, r = 20 \Longrightarrow B = 14$	M1	3.3
	$r = e^{0.3t} \left(20\cos 0.1t + 8\sin 0.1t \right) = 0$	M1	3.1b
	$\tan 0.1t = -2.5$	A1	1.1b
	2019	A1	3.2a
(d)(ii)	3750 foxes	B1	3.4
(d)(iii)	e.g. the model predicts a large number of foxes are on the island when the rabbits have died out and this may not be sensible	B1	3.5a
		(7)	
	(17 mark		narks)

Quest	Question 7 notes:		
(a)			
M1:	Attempts to differentiate the first equation with respect to t		
M1:	Proceeds to the printed answer by substituting into the second equation		
A1*:	Achieves the printed answer with no errors		
(b)			
M1:	Uses the model to form and solve the auxiliary equation		
A1:	Correct values for <i>m</i>		
M1:	Uses the model to form the CF		
A1:	Correct CF		
(c)			
M1:	Differentiates the expression for the number of foxes		
M1:	Uses this result to find an expression for the number of rabbits		
A1:	Correct equation		
(d)(i)			
M1:	Realises the need to use the initial conditions in the model for the number of foxes		
M1:	Realises the need to use the initial conditions in the model for the number of rabbits to find		
	both unknown constants		
M1:	Obtains an expression for <i>r</i> in terms of <i>t</i> and sets $= 0$		
A1:	Rearranges and obtains a correct value for tan		
A1:	Identifies the correct year		
(d)(ii)			
B1:	Correct number of foxes		
(d)(iii)			
B1:	Makes a suitable comment on the outcome of the model		