Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
1a	Quota.	B1	1.2	3rd
				Understand quota and opportunity sampling.
		(1)		
1b	Advantages – two from:	B1	2.4	5th
	• easy to get sample size	B1	2.4	Select and
	• inexpensive			critique a sampling
	• fast			technique in a given context.
	can be stratified if required.			given context.
	Disadvantages – one from:	B1	2.4	
	• not random			
	could be biased.			
		(3)		
1c	Allocate each of the males a number from 1 to 300	B1	3.1b	3rd
	Use calculator or number generator to generate 50 different random numbers from 1 to 300 inclusive.	B1	1.1b	Understand and carry out simple random sampling.
	Select males corresponding to those numbers.	B1	1.1b	
		(3)		
1d	$300 \div 50 = 6$	B1	3.1b	3rd
	Use a random number generator to select the first name (or one of the first 6 names on the list) as a starting point and then select every 6th name thereafter to get 50 names.	B1	1.1b	Understand and carry out simple random sampling.
		(2)		
	•	•		(9 marks)
	Notes			

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
2a	All points correctly plotted.	B2	1.1b	2nd
	x x x x x x x x x x x x x x x x x x x	92		Draw and interpret scatter diagrams for bivariate data.
		(2)		
2b	The points lie reasonably close to a straight line (o.e.).	B1	2.4	2nd
				Draw and interpret scatter diagrams for bivariate data.
		(1)		
2c	f	B1	1.2	2nd Know and understand the language of correlation and regression.
		(1)		
2d	Line of best fit plotted for at least $2.2 \le x \le 8$ with D and F above and B and C below.	M1	1.1a	4th Make predictions
	26 to 31 inclusive (must be correctly read from $x = 7$ from the line of best fit).	A1	1.1b	using the regression line within the range of the data.
		(2)		

2e	It is reliable because it is interpolation (700 km is within the range of values collected).	B1	2.4	4th Understand the concepts of interpolation and extrapolation.
		(1)		
2f	No, it is not sensible since this would be extrapolation (as 180 km is outside the range of distances collected).	B1	2.4	4th Understand the concepts of interpolation and extrapolation.
		(1)		

(8 marks)

Notes

2a

First B1 for at least 4 points correct, second B1 for all points correct.

2b

Do not accept 'The points lie reasonably close to a line'. Linear or straight need to be noted.

2e

Also allow 'It is reliable because the points lie reasonably close to a straight line'.

2f

Allow the answer 'It is sensible since even though it is extrapolation it is not by much' provided that the answer contains both ideas (i.e. it IS extrapolation but by a small amount compared to the given range of data).

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
3a	Car $\left(\frac{4}{5}\right)$ Not Late $\frac{1}{6}$ Bike $\left(\frac{3}{5}\right)$ Not Late $\frac{1}{3}$ Late $\frac{1}{10}$ Not Late			3rd Draw and use tree diagrams with three branches and/or three levels.
	Correct tree structure.	B1	3.1a	
	All labels correct.	B1	1.1b	
	All probabilities correct.	B1	1.1b	
		(3)		
3bi	1 1 1	M1	3.4	3rd
	$\frac{1}{3} \times \frac{1}{10} = \frac{1}{30}$ or equivalent.	A1	1.1b	Draw and use tree diagrams with three branches and/or three levels.
		(2)		
3bii	Car NL + Bike NL + Foot NL = $\left(\frac{1}{2} \times \frac{4}{5}\right) + \left(\frac{1}{6} \times \frac{3}{5}\right) + \left(\frac{1}{3} \times \frac{9}{10}\right)$	M1	3.4	3rd Draw and use tree diagrams with three branches
	$=\frac{4}{5}$ or equivalent.	A1	1.1b	and/or three levels.
		(2)		

(7 marks)

Notes

3bii

ft from their tree diagram. Allow one error for M1.

Can also be found from
$$1 - \left(\left(\frac{1}{2} \times \frac{1}{5} \right) + \left(\frac{1}{6} \times \frac{2}{5} \right) + \left(\frac{1}{3} \times \frac{1}{10} \right) \right)$$

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
4 a	 Each bolt is either faulty or not faulty. The probability of a bolt being faulty (or not) may be assumed constant. Whether one bolt is faulty (or not) may be assumed to be independent (or does not affect the probability of) whether another bolt is faulty (or not). There is a fixed number (50) of bolts. A random sample. 	B2	1.2	5th Understand the binomial distribution (and its notation) and its use as a model.
		(2)		
4b	Let <i>X</i> represent the number of faulty bolts. $X \sim B(50, 0.25)$ $P(X \le 6) = 0.0194$ $P(X \le 7) = 0.0453$ $P(X \ge 19) = 0.0287$ $P(X \ge 20) = 0.0139$	M1 M1dep	3.4 1.1b	5th Find critical values and critical regions for a binomial distribution.
	Critical Region is $X \le 6 \cup X \ge 20$	A2	1.1b 1.1b	
		(4)		

(6 marks)

Notes

4a

Each comment must be in context for its mark.

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
5a	Makes an attempt to find the absolute value. For example,	M1	3.1b	4th
	$\sqrt{(14)^2 + (22)^2}$ is seen.			Find the
	Simplifies to $\sqrt{680}$	M1	1.1b	magnitude and direction of a
	Finds speed = $26.07 (ms^{-1})$ Accept awrt $26.1 (ms^{-1})$	A1	1.1b	vector quantity.
		(3)		
5b	States that $\tan \theta = \frac{22}{14}$	M1	1.1b	4th Find the
	Finds the value of θ , $\theta = 57.52$	A1	1.1b	magnitude and
	Demonstrates that the angle with the unit \mathbf{j} vector is $90 - 57.52$	M1	1.1b	direction of a vector quantity.
	Finds 32.47 (°) Accept awrt 32.5(°)	A1	1.1b	
		(4)		
5c	Ignore the value of friction between the hockey puck and the ice.	B1	3.4	3rd Understand assumptions common in mathematical modelling.
		(1)		
5d	$\frac{1.4 \mathrm{g}}{1 \mathrm{cm}^3} \times \frac{1 \mathrm{kg}}{1000 \mathrm{g}} \times \frac{100 \mathrm{cm}}{1 \mathrm{m}} \times \frac{100 \mathrm{cm}}{1 \mathrm{m}} \times \frac{100 \mathrm{cm}}{1 \mathrm{m}}$	М3	1.1b	4th
	Award 1 method mark for division by 1000 and 1 method mark for multiplication by 100 only once and the final method mark for multiplication by 100 three times.			Know derived quantities and SI units.
	1400 kg m^{-3}	A1	1.1b	
		(4)		

(12 marks)

Notes

5b

Award all 4 marks for a correct final answer. Award 2 marks for a student stating $\tan \theta = \frac{14}{22}$, and then either making a mistake with the inverse or subtracting that answer from 90.

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
6	Makes an attempt to integrate $a = \frac{1}{500} (20t^2 - t^3)$	M1	3.1b	6th	
	Raising power by one would constitute an attempt.			Uses differentiation to solve problems in	
	Correctly finds $v = \frac{1}{500} \left(\frac{20}{3} t^3 - \frac{1}{4} t^4 \right)$. Note that $C = 0$.	A1	1.1b	kinematics.	
	Makes an attempt to integrate $v = \frac{1}{500} \left(\frac{20}{3} t^3 - \frac{1}{4} t^4 \right)$. Raising power by one would constitute an attempt.	M1	3.1b		
	Correctly finds $s = \frac{1}{500} \left(\frac{20}{12} t^4 - \frac{1}{20} t^5 \right)$. Note that $C = 0$.	A1	1.1b		
	Substitutes $t = 10$ into $s = \frac{1}{500} \left(\frac{20}{12} t^4 - \frac{1}{20} t^5 \right)$ to obtain	A1 ft	1.1b		
	$s = \frac{70}{3}$ (m). Accept awrt 23.3 (m).				
		(5)			

(5 marks)

Notes

6

Award the final accuracy mark for a correct substitution using their equation for displacement.

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
7a	Makes an attempt to substitute $t = 25$ into $s = 30t - 0.4t^2$.	M1	1.1b	5th
	For example $s = 30(25) - 0.4(25)^2$ is seen.			Use equations of motion to solve
	Correctly states that $AB = 500$ (m). Accept $s = 500$ (m).	A1	1.1b	problems in unfamiliar contexts.
		(2)		
7b	Differentiates $s = 30t - 0.4t^2$ to obtain $v = 30 - 0.8t$	M1	3.1b	6th
	Differentiates $v = 30 - 0.8t$ to obtain $a = -0.8$	M1	3.1b	Solve problems using calculus and
	States that $a = -0.8 (\text{m s}^{-2})$ is a constant as it does not depend on t .	A1	3.5a	the equations of motion.
		(3)		
7c	States distance of the car from point A is $s_1 = 30t - 0.4t^2$	M1	3.3	6th Solve problems using calculus and the equations of motion.
	$u = 2$ and $a = 0.1$ and an attempt to use $s = ut + \frac{1}{2}at^2$ is seen.	M1	3.3	
	States distance of the runner from point <i>B</i> is $s_2 = 2t + 0.05t^2$	M1	1.1b	
	States that the runner and the car will pass each other when their distances total 500 (m), or writes $s_1 + s_2 = 500$ (m)or writes $30t - 0.4t^2 + 2t + 0.05t^2 = 500$	M1	3.3	
	States that $0.35t^2 - 32t + 500 = 0$ or equivalent.	A1	1.1b	
	Solves to find $t = 20$ (s). Answer does not need to state that $t = \frac{500}{7}$ or 71.4 (s) is not in the given range.	A1	1.1b	
	Makes an attempt to substitute $t = 20$ into $s_1 = 30t - 0.4t^2$ or $s_2 = 2t + 0.05t^2$.	M1	1.1b	
	Correctly states they will pass each other 440 (m) from A or 60 (m) from B .	A1 ft	3.5a	
		(8)		

(13 marks)

Notes