Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
1a	 One of: to obtain a representative sample large number of students compared to staff so would be unfair to take same numbers of both. 	B1	2.4	5th Select and critique a sampling technique in a given context.
		(1)		
1b	A list of the names of staff and students.	B1	1.2	2nd Understand the vocabulary of sampling.
		(1)		
1c	A member of staff or a student.	B1	1.2	2nd Understand the vocabulary of sampling.
		(1)		
1d	Find proportions for different strata out of 60 (either explained or some sensible calculation seen).	M1	3.1b	3rd Understand and carry out stratified
	$\frac{250}{280} \times 60 \approx 54$ students, $\frac{30}{280} \times 60 \approx 6$ staff.	A1	1.1b	sampning.
	Select at random using a random number generator.	B 1	1.1b	
		(3)		
1e	 One of: absence on the day of the survey sampling frame may contain errors. 	B1	2.2b	5th Select and critique a sampling technique in a given context.
		(1)		
				(7 marks)

Notes

1d

Must be whole numbers for A1.

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
2a	Order the data.	M1	1.1b	2nd
	125, 160, 169, 171, 175, 186, 210, 243, 250, 258, 390, 420			Understand
	$Q_3 = \frac{1}{2} (250 + 258) = 254$	A1	1.1b	quartiles and percentiles.
		(2)		
2b	$Q_3 + 1.5(Q_3 - Q_1) = 254 + 1.5(254 - 170)$	M1	1.1b	4th
	= 380	A1	1.1b	Calculate outliers in data sets and
	Patients $F(420)$ and $B(390)$ are outliers (so may be suspected by the doctor as smoking more than one packet of cigarettes per day).	B1	3.2a	clean data.
		(3)		
(5 marks)				
Notes				

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
3 a	$\frac{2+3}{-1} = \frac{5}{-1} = \frac{1}{-1}$ or swit 0.167	M1	1.1b	1st
	$\overline{\text{total number of students}} = \frac{2}{30} = \frac{2}{6} \text{ or a wrt 0.107}$	A1	1.1b	Calculate probabilities for single events.
		(2)		
3b	$\frac{4+2+5+3}{\text{total}}$	M1	1.1b	3rd Understand and
	$=\frac{14}{30}$ or $\frac{7}{15}$ or awrt 0.467	A1	1.1b	use Venn diagrams for multiple events.
		(2)		
3c	0	B 1	1.1b	3rd
	No student reads both magazine A and magazine C.	B1	1.1b	Understand and use the definition of mutually exclusive in probability calculations.
		(2)		
3d	P(C reads at least one magazine) = $\frac{6+3}{20} = \frac{9}{20}$	B1	1.1b	3rd Understand and use Venn diagrams for multiple events.
		(1)		
3e	$P(B) = \frac{10}{30} = \frac{1}{3}, P(C) = \frac{9}{30} = \frac{3}{10}$	B1	2.1	4th Understand and
	P(<i>B</i> and C) = $\frac{3}{30} = \frac{1}{10}$, and	M1	2.2a	use the definition of independence in probability
	$P(B) \times P(C) = \frac{1}{3} \times \frac{3}{10} = \frac{1}{10} = P(B \text{ and } C)$	A1	2.4	calculations.
	So yes, they are independent.			
		(3)		
(10 marks)				

3e

Notes

Allow alternative using formal conditional probability: $P(B) = \frac{1}{3}$ (B1). Finding $P(B|C) = \frac{3}{(3+6)} = \frac{1}{3}$ and comparing with P(B) (M1). Correct conclusion (A1).

Or $P(C) = \frac{3}{10}$ (B1). Finding $P(C|B) = \frac{3}{(2+3+5)} = \frac{3}{10}$ and comparing with P(C) (M1). Correct conclusion (A1).

Q	Scheme		AOs	Pearson Progression Step and Progress descriptor
4 a	2k + k + 0 + k = 1	M1	2.1	4th
	$\Rightarrow 4k = 1$, so $k = 0.25$ (answer given).	A1*	1.1b	Calculate probabilities from discrete distributions.
		(2)		
4b 4c	$P(X_1 + X_2 = 5) = P(X_1 = 3 \text{ and } X_2 = 2) + P(X_1 = 2 \text{ and } X_2 = 3)$ = 0 + 0 = 0 (answer given). $x_1 + x_2 = 0 = 1 = 2 = 3 = 4 = 5 = 6$	B1* (1) M1	2.4	4th Calculate probabilities from discrete distributions. 4th
	$P(X_1 + X_2)$ 0.25 0.25 0.0625 0.25 0.125 0 0.0625	A1 A1 (3)	1.1b 1.1b	Calculate probabilities from discrete distributions.
4.4	$D(1, 2, 4, 4, 4, 4, 4, 2, 2) = D(Y_{1} + Y_{2} - 2) + D(Y_{2} + Y_{2} - 2)$	() M1	2.4	4th
70	$= 0.0625 + 0.25 = 0.3125 \text{ or } \frac{5}{5}$	Alft	1.1b	Calculate probabilities from discrete distributions.
	16			
		(2)		
(8 marks)				

(

4b

Notes

Must show that 5 can only be obtained from 2 and 3 or 3 and 2, and so must use P(X=2) = 0 but condone explanation in words.

4c

M1 for correct set of values for $X_1 + X_2$. Condone omission of 5 column.

A1 for correct probabilities for 0, 2 and 6. A1 for others. Equivalent fractions are $\frac{1}{4}$, $\frac{1}{4}$, $\frac{1}{16}$, $\frac{1}{4}$, $\frac{1}{8}$, $\frac{1}{16}$

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
5a	States correct answer: 5.3 (m s ⁻¹)	B1	2.2a	4th Understand the difference between a scalar and a vector.
		(1)		
5b	States correct answer: $-4.8 \text{ (m s}^{-1}\text{)}$	B1	2.2a	4th Understand the difference between a scalar and a vector.
		(1)		
5c	States correct answer: -30 (m)	B1	2.2a	4th Understand the difference between a scalar and a vector.
		(1)		
(3 marks)				
Notes				

Q	Scheme		Marks	AOs	Pearson Progression Step and Progress descriptor
6a	Figure 1	General shape of the graph is correct. i.e. horizontal line, followed by negative gradient, followed by a positive gradient.	M1	3.3	4th Use and interpret graphs of velocity against time.
	$\begin{array}{c c} \hline \hline \\ $	Vertical axis labelled correctly.	A1	1.1b	
		Horizontal axis labelled correctly.	A1	1.1b	
			(3)		
6b	Makes an attempt to find the area of trapezoidal section where the car is decelerating. For example, $\frac{T}{4}(15+10)$ is seen.		M1	1.1b	4th Calculate and interpret areas
	Makes an attempt to find the area of the where the car is accelerating. For examp seen.	e trapezoidal section ple, $\frac{3T}{4}(10+20)$ is	M1	1.1b	under velocity– time graphs.
	States that $15T + \frac{25T}{4} + \frac{90T}{4} = 1312.5$		M1	1.1b	
	Solves to find the value of $T: T = 30$ (s)		A1	1.1b	
			(4)		
(7 marks)					
Notes					

6a

Accept the horizontal axis labelled with the correct intervals.

6b

Award full marks for correct final answer, even if some work is missing.

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
7a	States, or implies in a subsequent step, that the resistances to motion will total 1600k (N). (Any variable is acceptable.)	M1	3.1b	4th Solve problems of	
	Uses $F = ma$ to write $3200 - 1600k = 1600(0.4)$	M1	3.3	connected	
	Solves the equation to find $k = 1.6$	A1	1.1b	dimension.	
	Finds the resistance forces acting on the trailer: $R_{\text{trailer}} = 400 \times 1.6 = 640 \text{ (N)}.$	A1	1.1b		
		(4)			
7b	Demonstrates an understanding that the resultant force for the trailer is $T - 640$, or for the car is $3200 - 1920 - T$	M1	3.1b	4th Solve problems of connected particles in one dimension	
	Either states $T - 640 = 400(0.4)$ using the trailer or states 3200 - 1920 - T = 1200(0.4) using the car.	M1	3.3		
	Correctly finds $T = 800$ (N).	A1 ft	1.1b		
		(3)			
7c	Uses $F = ma$ to write $-640 = 400a$	M1	3.3	4th Solve problems of connected particles in one	
	Correctly solves to find $a = -1.6 \text{ m s}^{-2}$	A1 ft	1.1b		
	Uses $v^2 = u^2 + 2as$ to write $0 = 25^2 + 2(-1.6)s$	M1	3.1b		
	Correctly solves to find $s = 195.31$ (m). Accept awrt 195 (m).	A1 ft	1.1b	dimension.	
		(4)			
7d	States 'the acceleration of the car will be equal to the acceleration of the trailer' or states 'the car and the trailer will move as one'.	B1	3.5	4th Solve problems of connected particles in one dimension.	
		(1)			
				(12 marks)	

7b

Notes

Award ft marks for a correct answer using their value from part **a** for the resistance acting on the trailer.

7c

Award ft marks for a correct answer using their value from part \mathbf{a} for the resistance acting on the trailer and from part \mathbf{b} for tension.

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
8	Integrates $a = 12t - 4$ to obtain $v = 6t^2 - 4t + A$ Any constant is acceptable.	M1	3.1b	6th Uses integration	
	Integrates $v = 6t^2 - 4t + A$ to obtain $s = 2t^3 - 2t^2 + At + B$. Any constant are acceptable.	M1	3.1b	to solve problems in kinematics.	
	Makes an attempt to form a pair of simultaneous equations by separately substituting $(1, 2)$ and $(3, 30)$ into the equation. For example: $2 = 2 - 2 + A + B$ and $30 = 54 - 18 + 3A + B$ are seen.	M1	3.1b		
	Simplifies to obtain a correctly pair of simultaneous equations: A + B = 2 and $3A + B = -6$ are seen.	M1	1.1b		
	Solves to find $A = -4$	A1	1.1b		
	Solves to find $B = 6$	A1	1.1b		
	Attempts to make a substitution of $t = 2$ into $s = 2t^3 - 2t^2 - 4t + 6$	M1	1.1b		
	For example, $s = 2(2)^3 - 2(2)^2 - 4(2) + 6$ is seen.				
	Correctly finds $s = 6$ (m).	A1 ft	1.1b	1	
		(8)			
	(8 marks)				

Notes

8

Award the final method mark and the final accuracy mark for a correct substitution using their values for A and B.