Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
1a	A complete collection of relevant individual people or items.	B1	1.2	2nd
				Understand the vocabulary of sampling.
		(1)		
1b	Opportunity (convenience).	B1	1.2	3rd
				Understand quota and opportunity sampling.
		(1)		
1c	Systematic.	B 1	1.2	3rd
				Understand and carry out systematic sampling.
		(1)		
1d	Two from:	B 1	2.4	5th
	• not random	B 1	2.4	Select and
	• electoral register may have errors			sampling
	• there may not be enough (500) households on the register.			technique in a given context.
		(2)		
1e	Either: random sampling – it avoids bias.	B1	2.4	5th
	Or : quota sampling – no sampling frame required, continue until all quotas filled.			Select and critique a
	Either: Random sampling from people buying kitchen cleaners in a large store, as this would reduce potential bias.	B1	2.4	sampling technique in a
	Or: Quota sampling from people based on a chosen set of ages and genders who use kitchen cleaners, continuing until all quotas are filled, as this would avoid the need for a sampling frame and allow for a more clearly representative sample.			given context.
		(2)		
				(7 marks)

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor		
2a	0.03 Faulty			2nd		
	0.85 0.97 Not Faulty 0.15 Amart			Draw and use simple tree diagrams with two branches and two levels.		
	0.94 Not Faulty					
	Tree (both sections) and labels	B1	3.1a			
	0.85, 0.15	B1	1.1b			
	0.03, 0.97, 0.06, 0.94	B1	1.1b			
		(3)				
2b	$P(Not faulty) = (0.85 \times 0.97) + (0.15 \times 0.94)$	M1	3.4	2nd		
		M1dep	1.1b	Draw and use		
	= 0.9655	A1	1.1b	simple tree		
				two branches and two levels.		
		(3)				
(6 marks)						
Notes						
2b	2b					
M1 for either 0.85×0.97 or 0.15×0.94 (ft from their tree diagram) and M1 (dep) for adding two such probabilities						

(allow one error).

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
3	Three comparisons in context:	B3	2.4	4th	
	For example:			Compare data sets	
	Very much warmer in Beijing than Perth.			familiar	
	Both consistent in the temperatures.			calculations and	
	Less rainfall in Beijing.			diagrams.	
	Less likely to have high rainfall in Beijing.				
	Rainfall in Beijing is consistently less than in Perth.	B1	2.4		
	Evidence of use of a statistic from the boxplots:				
	For example:				
	Medians				
	Measure of a difference in medians				
	Mention of a particular outlier				
	For accurately reading data from boxplots.	B1	2.4		
		(5)			
				(5 marks)	
Notes					

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
4 a	$X \sim B(15, 0.5)$	B1	3.1b	5th	
	B1 for binomial B1 for 15 and 0.5	B1	3.1b	Understand the binomial distribution (and its notation) and its use as a model.	
		(2)			
4bi	from calculator $P(X = 8) = 0.19638$	M1	3.4	5th	
		A1	1.1b	Calculate binomial probabilities.	
		(2)			
4bii	$P(X \ddot{O} 4) = 1 - P(X \tilde{N} 3)$	M1	3.4	6th	
	= 1 - 0.0176			Use statistical	
	$= $ awrt 0.982 or $\frac{503}{512}$	A1	1.1b	calculators to find cumulative binomial probabilities.	
		(2)			
				(6 marks)	
	Notes				
4bi					
$P(X=8) = P(X \ddot{O} 8) - P(X \tilde{N} 7) = 0.6964 - 0.5$					
or $\frac{15!}{8!7!} 0.5^8 (1-0.5)^7$					
or ¹⁵ C ₈	$\times 0.5^8 \times 0.5^7$				
or 6435	5×0.5^{15}				

 $= awrt \ 0.196 \ or \ \frac{6435}{32768}$

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
5a	$P(X \le 1) = 0.0076$ and $P(X \le 2) = 0.0355$	M1	1.1b	5th
	$P(X \ge 10) = 1 - 0.9520 = 0.0480$ and $P(X \ge 11) = 1 - 0.9829 = 0.0171$	A1	1.1b	Find critical values and critical regions for a binomial
	Critical region is $X \le 1 \cup 11 \le X (\le 20)$	A1	1.1b	distribution.
		(3)		
5b	Significance level = $0.0076 + 0.0171$	B1	1.1b	6th
	= 0.0247 or 2.47%			Calculate actual significance levels for a binomial distribution test.
		(1)		
5c	Not in critical region therefore insufficient evidence to reject H_0 .	B1	2.2b	6th Interpret the results
	There is insufficient evidence at the 5% level to suggest that the value of p is not 0.3.	B1	3.2a	of a binomial distribution test in context.
		(2)		
				(6 marks)
Notes				

Conclusion must contain context and non-assertive for first B1.

Q	Scheme		AOs	Pearson Progression Step and Progress descriptor
6a	Makes an attempt to find the distance from A to B. For $\sqrt{2}$	M1	3.1b	4th
	example, $\sqrt{(-28)^2 + (80)^2}$ is seen.			Find the magnitude and
	Makes an attempt to find the distance from <i>B</i> to <i>C</i> . For example, $\sqrt{(130)^2 + (15)^2}$ is seen.	M1	3.1b	direction of a vector quantity.
	Demonstrates an understanding that these two values need to be added. For example, 84.75 + 130.86 is seen.	M1	1.1b	
	215.62 (m)	A1	1.1b	
	Accept anything which rounds to 216 (m)			
		(4)		
6b	States that $\overrightarrow{AC} = 102\mathbf{i} + 95\mathbf{j}(\mathbf{m})$	B2	3.1b	4th
	Award one point for each value.			Find the magnitude and
	States or implies that $\tan \theta = \frac{95}{102}$	M1	1.1b	direction of a vector quantity.
	Finds $\theta = 42.96^{\circ}$	A1	1.1b	
	Accept awrt 43.0°			
		(4)		
(8 marks)				
Notes				

Q	Scheme		Marks	AOs	Pearson Progression Step and Progress descriptor	
7a	Velocity = acceleration × time seen or i	mplied.	M1	3.1b	4th	
	$Velocity = 11 \times 8 = 88 \text{ m s}^{-1}$		A1	A1 1.1b Use	Use and interpret graphs of velocity	
	Figure 2	General shape of the graph is correct. i.e. positive gradient, followed by horizontal line, followed by negative gradient not returning to zero.M1Vertical axis labelled correctly.A1	M1	3.3	against time.	
	0 8 T+8 T+10		A1	1.1b		
		Horizontal axis labelled correctly.	A1	1.1b		
			(5)			
7b	Makes an attempt to find the area of t For example, $2 \times \frac{1}{2} (88 + 40)$ is seen.	he trapezoidal section.	M1	1.1b	4th Calculate and interpret areas	
	Demonstrates an understanding that the second seco	he three areas must total $-2 \times \frac{1}{2} (88 + 40) = 1404$ or	M1	2.1	under velocity– time graphs.	
	Correctly solves to find $T = 10.5$ (s).		A1	1.1b	-	
			(3)			
					(8 marks)	
	Notes					

7a

Accept the horizontal axis labelled with the correct intervals.

7b

Award full marks for correct final answer, even if some work is missing.

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
8a	Either states that $\tan 30 = \frac{10}{a}$ or $\tan 60 = \frac{a}{10}$	M1	1.1b	5th
	Correctly find $a = 10\sqrt{3}$	M1	1.1b	Use Newton's second law to model motion in
	Interprets <i>a</i> in the context of the question, stating $a = -10\sqrt{3}$	A1	3.2	two directions.
		(3)		
8b	States that the magnitude of $\mathbf{R} = \sqrt{\left(-10\sqrt{3}\right)^2 + \left(10\right)^2}$	M1	1.1b	5th Use Newton's
	States $R = 20$ (N).	A1 ft	1.1b	second law to model motion in two directions.
		(2)		
8c	States $F = ma$ or implies use of $F = ma$. For example $20 = 6 \times a$ is seen.	M1	3.3	5th Use Newton's
	Correctly finds $a = \frac{10}{3} \text{ m s}^{-2}$.	A1 ft	1.1b	second law to model motion in two directions.
		(2)		
8d	States that $s = ut + \frac{1}{2}at^2$ or implies it use by writing $640 = (0)t + \frac{1}{2} \times \frac{10}{3} \times t^2$	M1	3.1b	5th Use Newton's second law to model motion in
	Solves to find $t = 8\sqrt{6}$ (s). Accept awrt 19.6 (s).	A1 ft	1.1b	two directions.
		(2)		
				(9 marks)

8b

Notes

Award ft marks for a correct answer using their value from part **a** for the **i** component of the force.

8c

Award ft marks for a correct answer using their value from part \mathbf{b} for the resultant force.

8d

Award ft marks for a correct answer using their value from part \mathbf{c} for the acceleration.

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor	
9	t = 5, v = 0	B1	1.1b	6th	
	Expands brackets and attempts differentiation. Reducing any power by one is sufficient evidence of differentiation.	M1	3.1b	Uses differentiation to solve problems in	
	Solves $25 - 20t + 3t^2 = 0$ to find $t = \frac{5}{2}$. The expression can be	A1	1.1b	kinematics.	
	factorised, or the quadratic formula can be used. $t = 5$ does not have to be seen to award the mark.				
	Makes an attempt to substitute $t = \frac{5}{3}$ into $v = \frac{1}{20}t(5-t)^2$.	M1	2.2a		
	For example, $v = \left(\frac{1}{20}\right) \left(\frac{5}{3}\right) \left(\frac{10}{3}\right)^2$ is seen.				
	Correctly finds $v = \frac{25}{27}$ or 0.92 (m s ⁻¹). Accept awrt	A1 ft	1.1b		
	$0.9 ({\rm m s^{-1}}).$				
		(5)			
(7 marks)					
Notes					
9					
Award the final method mark and the final accuracy mark for a correct substitution using their value for t.					