Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
1a	Observation or measurement of every member of a population.	B1	1.2	2nd Understand the vocabulary of sampling.
		(1)		
1b	 Two from: takes a long time/costly difficult to ensure whole population surveyed cannot be used if the measurement process destroys the item 	B1 B1	1.2 1.2	3rd Comment on the advantages and disadvantages of samples and censuses.
	• can be hard to manage and analyse all the data.	(2)		
1c	The list of unique serial numbers.	B1	1.2	2nd Understand the vocabulary of sampling.
		(1)		
1d	A circuit board.	B1	1.2	2nd Understand the vocabulary of sampling.
		(1)		
				(5 marks)
	Notes			

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
2a	$\begin{array}{c c} S \\ \hline \\ 41 \\ \hline \\ 36 \\ 24 \\ \end{array}$			3rd Understand and use Venn diagrams for multiple events.
	17 16 Ν ξ			
	Three closed curves and four in centre.	M1	3.1a	
	Evidence of subtraction (any one of 31, 36, 24, 41, 17 or 11).	M1	3.3	
	Any three of 31, 36, 24, 41, 17 or 11 correct.	A1	1.1b	
	All correct.	A1	1.1b	
	Labels on sets, 16 and closed curve or box outside.	B1	1.1b	
		(5)		
2bi		B1	3.4	3rd
	P(None of the 3 options) $=\frac{16}{180} = \frac{4}{45}$ or awrt 0.0889			Understand and use Venn diagrams for multiple events.
		(1)		
2bii	$\mathbf{P}(\mathbf{N}_{\mathbf{M}}) = \frac{17}{12} = 17$	B1	3.4	3rd
	P(Networking only) = $\frac{17}{180}$ or awrt 0.0944			Understand and use Venn diagrams for multiple events.
		(1)		
2c		M1	3.4	3rd
	P(Takes all three options takes S and N) = $\frac{4}{40} = \frac{1}{10}$ or 0.1	A1	1.1b	Understand and use Venn diagrams for multiple events.
		(2)		
<u> </u>		1 1		(9 marks)
	Notes			

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
3 a	$19.5 + \frac{(60-29)}{43} \times 10 = 26.7093$ (Accept awrt <u>26.7</u> miles)	M1 A1	1.1b 1.1b	3rd Estimate median
				values, quartiles and percentiles using linear interpolation.
		(2)		
3b	$\overline{x} = \frac{3552.5}{120} = 29.6041$ o.e. (Accept awrt <u>29.6</u> miles)	B1	1.1b	4th
	120			Calculate variance and
	$\sigma = \sqrt{\left(\frac{138043.13}{120} - \bar{x}^2\right)}$	M1	1.1a	standard deviation from grouped data and summary
	or			statistics.
	$\sigma^2 = \frac{138043.13}{120} - \bar{x}^2$			
	or			
	$s = \sqrt{\frac{120\sigma^2}{119}}$			
	$\sigma = 16.5515$ (Accept awrt <u>16.6</u> miles) (or $s = 16.6208 = 16.6$ miles)	A1	1.1b	
		(3)		
3c	Any sensible reason linked to the shape of the distribution.	B1	2.4	4th
	For example:			Calculate means,
	The distribution is (positively) skewed.			medians, quartiles and standard
	A few large distances (values) distort the mean.			deviation.
		(1)		

3d	Comparison of the two means.	B 1	1.1b	4th
	For example, the mean distance for London is smaller than for Devon.			Compare data sets using a range of
	Sensible interpretation comparing a county to a city.	B1	B1 2.2b	familiar calculations and
	For example, distance to work into one city may not be as far as travelling to different cities in a county.	21	2.20	diagrams.
	For example, commuters need to travel further to the cities in Devon for work.			
	Comparison of the two standard deviations:	B 1	1.1b	
	For example, the standard deviation for London is larger than for Devon.			
	Sensible interpretation relating to variability/consistency	B 1	2.2b	
	For example, there is more variability (less consistency) in the commute distances from the Greater London station than from the Devon station.			
-		(4)		
				(10 marks)
	Notes			
3a				
Allow co	consistent use of $n + 1$ (i.e. for median 60.5th rather than 60th), medi	an = 26.8	3	
3c				
Candida	tes must compare both the means and standard deviations with inter	rpretation	ns for ful	l marks.

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
4 a	$X \sim B(20, 0.05)$	B1	3.1b	5th
	B1 for binomial B1 for 20 and 0.05	B1	3.1b	Understand the binomial distribution (and its notation) and its use as a model.
		(2)		
4b	P(X=0) = 0.358 (awrt)	B1	3.4	5th
		A1	1.1b	Calculate binomial probabilities.
		(2)		
4c	$P(X > 4) = 1 - P(X \ \tilde{N} \ 4)$	M1	3.4	6th
	= 1 - 0.9974			Use statistical tables and
	= 0.0026 (2 s.f.) (answer given)	A1*	1.1b	calculators to find cumulative binomial probabilities.
		(2)		
				(6 marks)
	Notes			
4 b				
$\mathbf{P}(X=0$	$) = 0.95^{20}$			

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
5ai	States that $x = 0$ needs to be substituted or implies it by writing $h = 1.7 + 0.18(0) - 0.01(0)^2$	M1	3.1b	3rd Understand how mechanics
	Correctly substitutes $x = 0$ to get $h = 1.7$ (m)	A1	1.1b	problems can be modelled mathematically.
		(2)		
5aii	States that $x = 7$ needs to be substituted or implies it by writing $h = 1.7 + 0.18(7) - 0.01(7)^2$	M1	3.1b	3rd Understand how
	Correctly substitutes $x = 7$ to get $h = 2.47$ (m) Accept awrt 2.5 (m)	A1	1.1b	mechanics problems can be modelled mathematically.
		(2)		
5b	Understands that the ball will hit the ground when $h = 0$ or writes $1.7 + 0.18x - 0.01x^2 = 0$	M1	3.1b	3rd Understand how
	Realises that the quadratic formula is needed to solve the quadratic. For example $a = 0.01$, $b = -0.18$, $c = -1.7$ seen, or makes attempt to use the formula: $x = \frac{0.18 \pm \sqrt{(-0.18)^2 - 4(0.01)(-1.7)}}{2(0.01)}$	M1	1.1b	mechanics problems can be modelled mathematically.
	Simplifies the $b^2 - 4ac$ part to get 0.1004 or shows $x = \frac{0.18 \pm \sqrt{0.1004}}{0.02}$	M1	1.1b	
	Calculates $x = 24.84$ (m) Accept awrt 24.8 (m) Does not need to show that $x \neq -6.84$ (m)	A1	1.1b	
	States that the ball will be called 'in', or says, for example, yes as $24.84 < 25$.	B1	3.2a	
		(5)		

5c	$\frac{2 \text{ km}}{1 \text{ min}} \times \frac{1000 \text{ m}}{1 \text{ km}} \times \frac{1 \text{ min}}{60 \text{ sec}}$ Award 1 method mark for multiplication by 1000 and 1 method mark for division by 60.	M2	1.1b	3rd Understand how mechanics problems can be modelled
	$33.3 (m s^{-1}) \text{ or } 33.3 (m s^{-1})$	A1	1.1b	mathematically.
		(3)		
				(12 marks)
	Notes			
5ai				
Award b	both marks for a correct final answer.			
5aii				
Award b	both marks for a correct final answer.			
5b				
a = -0.0	01, $b = 0.18$, $c = 1.7$ is also acceptable.			
5b				
Award t	he third method mark even if this step is not seen, providing the f	inal answer	is correct.	

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
6a	Demonstrates an understanding of the need to use	M1	3.1b	5th
	$s = ut + \frac{1}{2}at^2$			Use equations of motion to solve
	This can implied by using the equation in the next step(s).			problems in familiar contexts.
	Demonstrates the need to use $(t-3)$ when finding the displacement of Q from A (or use $(t+3)$ when finding the displacement of P from A). Can be implied in either of the following steps.	M1	3.1b	Taminar contexts.
	Displacement of <i>P</i> : $s = 2.8t + 0.06t^2$	A1	1.1b	
	Displacement of <i>Q</i> : $s = 2.4(t-3) + 0.1(t-3)^2$	A1	1.1b	-
		(4)		
6b	Writes $2.8t + 0.06t^2 = 2.4(t-3) + 0.1(t-3)^2$	M1	3.1b	5th
	Makes an attempt to simplify this equation. For example,	M1	1.1b	Use equations of motion to solve
	$2.8t + 0.06t^{2} = 2.4t - 7.2 + 0.1(t^{2} - 6t + 9)$			problems in familiar contexts.
	$2.8t + 0.06t^2 = 2.4t - 7.2 + 0.1t^2 - 0.6t + 0.9$			fammar contexts.
	$0.04t^2 - t - 6.3 = 0$			
	Simplifies this expression to $2t^2 - 50t - 315 = 0$	A1	1.1b	
		(3)		
6c	Makes an attempt to use the quadratic formula:	M1	2.2a	5th
	$t = \frac{50 \pm \sqrt{(-50)^2 - 4(2)(-315)}}{2(2)}$			Use equations of motion to solve problems in
	Solves to find $t = 30.21$ (s).	A1	1.1b	familiar contexts.
	Could also show that $t \neq -5.21$ (s).			
	States or implies $s = ut + \frac{1}{2}at^2$	M1	3.1b	
	Makes a substitution using their 30.21 into the formula:	M1	1.1b	
	$s = (2.8)(30.2) + \frac{1}{2}(0.12)(30.2)^2$			
	Finds $s = 139.36$ (m). Accept awrt 139 (m).	A1 ft	1.1b	1
		(5)		

Notes

Award both accuracy marks if the following is seen:

Displacement of *P* from *A*: $s = 2.8(t+3) + 0.06(t+3)^2$

Displacement of Q from A: $s = 2.4t + 0.1t^2$

6c

6a

Award ft marks for a correct answer using their '30.2'. They will have previously lost the first accuracy mark.

7aStates $F = ma$ or implies use of $F = ma$ For example, $-120 = 80 \times a$ is seen.M13.3For example, $-120 = 80 \times a$ is seen.Correctly finds $a = -\frac{3}{2}(m s^{-2})$ or $a = -1.5 (m s^{-2})$.A11.1bStates $v = u + at$, or implies its use. For example, $0 = 18 + \left(-\frac{3}{2}\right)t$ is seen.M13.1bFinds $t = 12$ (s).A1 ft1.1b(4)Correctly finds $s = 108$ (m).A1 ft1.1b(2)7cStates that the cyclist is not a particle, or states that the resistive force is unlikely to be constant.B13.5	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
Correctly finds $a = -\frac{3}{2}$ (m s ⁻²) or $a = -1.5$ (m s ⁻²).A11.1bStates $v = u + at$, or implies its use. For example, $0 = 18 + \left(-\frac{3}{2}\right)t$ is seen.M13.1bFinds $t = 12$ (s).A1 ft1.1b(4)(4)7bStates that $v^2 = u^2 + 2as$ or implies it use by writing $0^2 = 18^2 + 2\left(-\frac{3}{2}\right)s$ M12.2aCorrectly finds $s = 108$ (m).A1 ft1.1b(2)(2)7cStates that the cyclist is not a particle, or states that the resistive force is unlikely to be constant.B13.5	•	M1	3.3	4th
Correctly finds $a = -\frac{3}{2} (m s^{-2})$ or $a = -1.5 (m s^{-2})$. States $v = u + at$, or implies its use. For example, $0 = 18 + \left(-\frac{3}{2}\right)t$ is seen. Finds $t = 12$ (s). A1 ft 1.1b (4) 7b States that $v^2 = u^2 + 2as$ or implies it use by writing $0^2 = 18^2 + 2\left(-\frac{3}{2}\right)s$ Correctly finds $s = 108$ (m). A1 ft 1.1b (2) 7c States that the cyclist is not a particle, or states that the resistive force is unlikely to be constant. B1 3.5	For example, $-120 = 80 \times a$ is seen.			Use Newton's second law to
Image: Definition of a constraint of champles, in a constraint of constraint of champles, in a constraint of constraint.The constraint of co	Correctly finds $a = -\frac{3}{2} (m s^{-2})$ or $a = -1.5 (m s^{-2})$.	A1	1.1b	model motion in one direction.
Finds $t = 12$ (s).A1 ft1.1bFinds $t = 12$ (s).A1 ft1.1b(4)(4)7bStates that $v^2 = u^2 + 2as$ or implies it use by writing $0^2 = 18^2 + 2\left(-\frac{3}{2}\right)s$ M12.2aCorrectly finds $s = 108$ (m).A1 ft1.1b(2)(2)7cStates that the cyclist is not a particle, or states that the resistive force is unlikely to be constant.B13.5		M1	3.1b	
The index $i D(0)$ The index(4)(4)7bStates that $v^2 = u^2 + 2as$ or implies it use by writing $0^2 = 18^2 + 2\left(-\frac{3}{2}\right)s$ M1 $2.2a$ Correctly finds $s = 108$ (m).A1 ft(2)7cStates that the cyclist is not a particle, or states that the resistive force is unlikely to be constant.B13.5	$0 = 18 + \left(-\frac{3}{2}\right)t$ is seen.			
7bStates that $v^2 = u^2 + 2as$ or implies it use by writing $0^2 = 18^2 + 2\left(-\frac{3}{2}\right)s$ M12.2aCorrectly finds $s = 108$ (m).A1 ft1.1b(2)7cStates that the cyclist is not a particle, or states that the resistive force is unlikely to be constant.B13.5	Finds $t = 12$ (s).	A1 ft	1.1b	1
States that $V = u + 2ds$ of highles it use by writingAll V $0^2 = 18^2 + 2\left(-\frac{3}{2}\right)s$ Correctly finds $s = 108$ (m).A1 ftImage: Correctly finds $s = 108$ (m).(2)7cStates that the cyclist is not a particle, or states that the resistive force is unlikely to be constant.B1		(4)		
Correctly finds $s = 108$ (m).A1 ft1.1bCorrectly finds $s = 108$ (m).Correctly finds $s = 108$ (m).7cStates that the cyclist is not a particle, or states that the resistive force is unlikely to be constant.B13.5	States that $v^2 = u^2 + 2as$ or implies it use by writing	M1	2.2a	4th
7c States that the cyclist is not a particle, or states that the resistive force is unlikely to be constant. B1 3.5	$0^2 = 18^2 + 2\left(-\frac{3}{2}\right)s$			Use Newton's second law to model motion in
7c States that the cyclist is not a particle, or states that the resistive force is unlikely to be constant. B1 3.5	Correctly finds $s = 108$ (m).	A1 ft	1.1b	one direction.
resistive force is unlikely to be constant.		(2)		
(1)	· ·	B1	3.5	4th Use Newton's second law to model motion in one direction.
		(1)		
		I		(7 marks)
Notes	 Notes			
7a				

7b

Award ft marks for a correct answer using their value for acceleration.