Question	Scheme	Marks	AOs
1(a)	$[Q_2 =] (5+) \frac{12}{15} \times 5$ or (use of $(n+1)$) $(5+) \frac{12.5}{15} \times 5$	M1	1.1a
	= 9 or 9.166 awrt 9.17	A1	1.1b
		(2)	
(b)	(b) $\left[\sigma_x = \right] \sqrt{\frac{5675}{30} - \left(\frac{355}{30}\right)^2} = \sqrt{49.14}$		1.1a
	= <u>awrt 7.01</u>	A1	1.1b
	Accept $\left(s_x = \sqrt{\frac{5675 - 30\left(\frac{355}{30}\right)^2}{29}} = 7.1294 \right)$	(2)	
(c)	$x = \frac{t-15}{2}$ or $t = 2x+15$	M1	3.1b
	Median = 2 ¥ "9"+ 15 = 33 (allow awrt 33.3 from "9.17" in (a))	A1ft	1.1b
	Sd = 2 "7.01" = 14.02 (awrt 14.0) [allow awrt 14.3 if s used]	A1ft	1.1b
		(3)	
(d)	The median time is "33" and "33" < 35 so 50% (30) should finish in 35 minutes. ALT Probability of being < 35 mins is $\frac{18}{30} \setminus \frac{18}{30} \notin 60 = 36$ applicants to choose from.	M1	2.4
	It is likely that they will fill all 25 positions [providing those offered accept]	A1	2.2b
		(2)	
Notes:		(9 m	arks)
(a) M1: Fo	or a suitable fraction ×5 (ignore end points)		
	or 9 or awrt 9.17 if using $n + 1$		
	or a correct expression for \overline{x} and s_x or s_x		
	for awrt $s_x = 7.01$ or $s_x = awrt 7.13$ for realising $x = \frac{t - 15}{2}$ and then rearranging to get a correct equation with	h t as the s	ubject
Alft: f	Tay be implied by a correct answer for the median of t. t their median t their s_x or s_x . NB using s gives awrt14.3		
	or a suitable comparison following through their value for the median of	<i>t</i> .	

Question	Sch	eme	Marks	AOs
2(a)	$P(5 \le X < 12) = P(X \le 11) - P(X \le 11)$	4)	M1	1.1b
	= 0.8939 - 0.0495	= awrt <u>0.844</u>	A1	1.1b
			(2)	
(b)	H ₀ : $p = 0.25$ H ₁ : $p > 0.25$ (both	a correct in terms of p or p)	B1	2.5
	$Y \sim B(40, 0.25)$		M1	3.3
	Method 1	Method 2		
	$P(Y \ge 16) = 1 - P(Y \le 15)$	$P(Y \ge 17) = 0.0116$	M1	1.1b
	= 1 - 0.9378	$P(Y \ge 18) = 0.0047$		
	= 0.0262	CR: $Y \ge 18$	A1	1.1b
	0.0262 > 0.01 16 < 18 or 16 is not significant, accept H ₀ . There is no sproportion of people who bought of	significant evidence that the	A1 cso	2.2b
			(5)	
(c)	There is evidence that the proportion eggs has increased [since $0.05 > 0$.		B1ft	2.2b
			(1)	
	•		(8 n	narks

Notes:

(a)M 1: For dealing with $P(5 \le X < 12)$ they need to use the cumulative prob. Function on the calc. A1: awrt 8.44 (from calculator).

(b) B1: Both hypotheses correct using p or p and 0.25

M1: Realising that the model B(40, 0.25) is to be used. This may be stated or used.

M1: Using or writing $1 - P(Y \le 15)$ or $1 - P(Y \le 16)$

a correct CR or $P(Y \ge 17) = 0.0116$ and $P(Y \ge 18) = 0.0047$

A1: awrt 0.0262 or CR $Y \ge 18$ or Y > 17

A1cso: A fully correct solution with a correct conclusion in context to include the idea of proportion and increased plus referring to organic

(c) B1ft: For 0.0262 < 0.05 [ft their probability in part(b)] or a CR of $16 \ge 15$ (allow 16 > 14) and a correct contextual conclusion.

Question	Scheme	Marks	AOs
3 (a)	Pressure outliers are <1004.75 and >1018.75 Rainfall outliers are (<-3.05) and >82.95	M1	2.1
	p = 1019 and 1022 are outliers w = 102.0 is an outlier	Alcso	1.1b
		(2)	
(b)	e.g. was a negative correlation, now no (zero) correlation	B1	2.2b
		(1)	
(c)	 e.g. there are a lot of zeros for rainfall in Perth and there are none in the sample. or e.g. these are the highest figures and you are unlikely to get these if the sample was random. 	B1	2.4
		(1)	
(d)	On average, an increase of 1 hPa in daily mean pressure results in a decrease of 0.223 mm in daily rainfall.	B1	3.4
		(1)	
(e)	Unreliable, as the large data set does not cover December.	B1	2.4
		(1)	
		(6 n	narks
Notes:			
• •	least one correct boundary point h upper boundary points and correct conclusions		
	A suitable description of correlation before and after.		
(c) B1: For	a comment that supports the idea that the sample is unlikely to be rando	om.	
(d) B1 • Fc	or a suitable description of the rate : rainfall per number of hPa with refer	rence to fig	ures

(e) B1: For correct conclusion with a reason explaining why it would be extrapolation.NB: B0 For out of range, extrapolation o.e. on their own without a reason.

Question	Scheme	Marks	AOs
4(a)	S and A since there is no intersection between A and S or the probability of S and A happening is zero	B1	1.2
		(1)	
(b)	(0.1+ p)¥ 0.25 = 0.1 [p = 0.3]	M1	3.1b
	q = 0.15 or $1 - q = 0.85$	M1	1.1b
	r = 1 - p'' - q'' - 0.25	M1dd	3.1b
	= 0.3	Al	1.1b
		(4)	
(c)	Independent since $0.25 \times "0.2" = 0.05$	B1	2.2a
		(1)	
(d)	The teacher's belief would appear not to be justified as <i>D</i> and <i>S</i> are independent	B1ft	2.4
		(1)	
		(7 n	narks)
Notes:			
(a) B1: For	r S and A and a sensible reason		
	or forming a correct equation in terms of p using the information given.		
M1: W	Vriting or using $q = 0.15$ or $1 - q = 0.85$		
to	dependent on both previous M marks being awarded. For using their vators form a correct equation to enable them to find r	lues for <i>p</i> a	ind q
A1: ca	10		
	es and a suitable reason to support their answer bringing together the two ation to draw the correct conclusion	o pieces of	
(d) B1: A	correct comment following their answer to part (c) with reference to the	teachers be	elief.

Question	Scheme	Marks	AOs
1(a)	Use of $s = vt - \frac{1}{2}at^2$	M1	2.1
	$19.6 = 4v - \frac{1}{2} \times 9.8 \times 4^2$	A1	1.1b
	$v = 24.5 \text{ or } 25 \text{ (m s}^{-1})$	A1	1.1b
		(3)	
(b)	$0 = 14.7^2 - 2 \times 9.8h$	M1	2.1
	h = 11.0 or 11 (m)	A1	1.1b
		(2)	
(c)	New value of speed would be lower.	B1	3.5a
		(1)	
		(6 n	narks)
Notes:			
	1	uations and	d then
(b)			
-	ete method to find <i>h</i>		
A1: 11.0 or	r 11 (m)		
(c) B1: New va	alue of speed will be lower		

Question	Scheme	Marks	AOs
2(a)	V Shape 0 120	B1	1.1b
	V, 120	B1	1.1b
		(2)	
(b)	$\frac{1}{2} \times 120V = 1500$	M1	3.1b
	<i>V</i> = 25	Al	1.1b
		(2)	
(c)	Area of triangle = Distance travelled = $(\frac{1}{2} \times 120V) = 1500$	B1	2.4
	This does not depend on <i>T</i> so <i>T</i> can take any value where $0 < T < 120$	B1	2.4
		(2)	
(d)	Include a constant speed phase in the motion	B1	3.5c
		(1)	
		(7 n	narks)
Notes:			
-	e, starting at the origin with base on axis and apex between $t = 0$ and $t = 20$ correctly marked (allow a delineator)	= 120	
(b) M1: Identif A1: V = 25	ying correct strategy to solve problem to give equation in V only		
	E triangle only depends on base and height an take any value $0 < T < 120$		
(d) B1: e.g. Inc	lude a <i>smooth</i> change from acceleration phase to deceleration phase. ve a variable acceleration and/or deceleration phase		

Question	Scheme	Marks	AOs
3(a)(i)	Equation of motion for <i>P</i> with usual rules	M1	3.3
	$T - 1.5 = 0.4 \times 2.5$	A1	1.1b
	T = 2.5 (N)	Al	1.1b
(ii)	Equation of motion for Q with usual rules	M1	3.3
	10M - T = 2.5M	A1	1.1b
	<i>M</i> = 0.33	A1	1.1b
		(6)	
(b)	$2 = \frac{1}{2} \times 2.5t^2$	M1	3.4
	t = 1.3 (s)	A1	1.1b
		(2)	
(c)	e.g. the mass of the rope	B1	3.5b
		(1)	
		(9 n	narks)
Notes:			
A1: Corr A1: Corr (a)(ii) Kess M1: Ress A1: Corr A1: Corr (b) Corr	blve horizontally for P ect equation rect answer. Ignore units blve vertically for Q rect equation rect answer		
	$s = ut + \frac{1}{2}at^2$ Ignore units		
(c) B1: e.g. t	he pulley may not be smooth, hir resistance		

Question	Scheme	Marks	AOs
4(a)	$s = \int_{0}^{1} 16 - 3t^{2} dt$ $= \left[16t - t^{3}\right]_{0}^{1}$	M1	1.1a
	$= \left[16t - t^3\right]_0^1$	A1	1.1b
	=15 (m)	A1	1.1b
		(3)	
(b)	$16 - 3t^2 = 0$	M1	3.1b
	$t = \sqrt{\frac{16}{3}} \text{oe}$	A1	1.1b
		(2)	
(c)	$16t - t^3 = 0$	M1	3.1b
	$t(16 - t^2) = 0$	M1	1.1b
	t = 4	A1	1.1b
		(3)	
		(8 n	narks)
Notes:			
A1: Corr A1: 15 ((b)	ifying correct strategy to solve problem of finding direction change by e	equating v t	
(c)	ct answer – any surd or decimal equivalent to at least 2 sf fying correct strategy to solve problem by using use $s = 0$ and equating	their integr	ral to 0
	npt to solve	unon mitegi	ai 10 V