AS Pure Mathematics 8MA0: Specimen Paper 1 Mark Scheme

Question	Scheme	Marks	AOs
1 (a)	$y = 2x^3 - 2x^2 - 2x + 8 \Longrightarrow \frac{dy}{dx} = 6x^2 - 4x - 2$	M1	1.1b
		(2)	1.1b
(b)	Attempts $6x^2 - 4x - 2 > 0 \implies (6x + 2)(x - 1) > 0$	M1	1.1b
	$x = -\frac{1}{3}, 1$	A1	1.1b
	Chooses outside region	M1	1.1b
	$\left\{x:x<-\frac{1}{3}\right\}\cup\left\{x:x>1\right\}$	A1	2.5
		(4)	
		(6 n	narks)
Notes:			
(a) M1: Attemr	ots to differentiate. Allow for two correct terms un-simplified		
	$= 6x^2 - 4x - 2$		
(b)			
M1: Attemp	ots to find the critical values of their $\frac{dy}{dx} > 0$ or their $\frac{dy}{dx} = 0$		
A1: Correct	critical values $x = -\frac{1}{3}, 1$		
M1: Choose	es the outside region		
A1: $\begin{cases} x: x < x \\ y : x < y \end{cases}$	$\left\{x - \frac{1}{3}\right\} \cup \left\{x : x > 1\right\} \text{ or } \left\{x : x \in \mathbb{R} \mid x < -\frac{1}{3} \text{ or } x > 1\right\}$		
Accept	also $\left\{x:x\tilde{N}-\frac{1}{3}\right\}\cup\left\{x:x\ddot{O}1\right\}$		

Question	Scheme	Marks	AOs
2 (a)	$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = 6\mathbf{i} - 3\mathbf{j} - (4\mathbf{i} + 2\mathbf{j})$	M1	1.1b
	=2i-5j	Al	1.1b
		(2)	
1(b)	Explains that \overrightarrow{OC} is parallel to \overrightarrow{AB} as $8\mathbf{i} - 20\mathbf{j} = 4 \times (2\mathbf{i} - 5\mathbf{j})$	M1	1.1b
	As $\overrightarrow{OC} = 4 \times \overrightarrow{AB}$ it is parallel to it and not the same length Hence $OABC$ is a trapezium.	Al	2.4
		(2)	
		(4 n	narks)
Notes:			
(a) M1: Attemp A1: 2i-5j	ots $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$ or equivalent. This may be implied by one correct of	component	
(b)			
A1: Fully ex	ots to compare vectors OC and AB by considering their directions explains why $OABC$ is a trapezium. (The candidate is required to state of the same length as it.)	that <i>OC</i> is pa	rallel

Question	Scheme	Marks	AOs
3(a)	Uses or implies that $V = at + b$	B1	3.3
	Uses both $4 = 24a + b$ and $2.8 = 60a + b$ to get either a or b	M1	3.1b
	Uses both $4 = 24a + b$ and $2.8 = 60a + b$ to get both a and b	M1	1.1b
	$\Rightarrow V = -\frac{1}{30}t + 4.8$	A1	1.1b
		(4)	
(b)	(i) States that the initial volume is 4.8 m ³	B1 ft	3.4
	(ii) Attempts to solve $0 = -\frac{1}{30}t + 4.8$	M1	3.4
	States 144 minutes	A1	1.1b
		(3)	
(c)	 States any logical reason The tank will leak more quickly at the start due to the greater water pressure The hole will probably get larger and so will start to leak more quickly Sediment could cause the leak to be plugged and so the tank would not empty. 	B1	3.5b
		(1)	
		(8 n	narks)
Notes:			
You may aw M1: Award 4 = 24a + b may just see M1: Uses 4	trimplies that $V = at + b$ ward this at their final line but it must be $V = f(t)$ ded for translating the problem in context and starting to solve. It is score and $2.8 = 60a + b$ are written down and the candidate proceeds to find e e a line $\pm \frac{4-2.8}{60-24}$ 4 = 24a + b and $2.8 = 60a + b$ to find both a and b $\frac{1}{60}t + 4.8$ or exact equivalent. Eg $30V + t = 144$		
(b)(i) B1ft: Follov (b)(ii)	w through on their 'b'		
	that $V = 0$ and finds t by attempting to solve their $0 = -\frac{1}{30}t + 4.8$		
A1: States	50		
(c) B1: States a	any logical reason. There must be a statement and a reason that matches	See schem	e

Question	Scheme	Marks AO
4(a)	(4,-3)	B1 1.2
		(1)
(b)	<i>x</i> = 6	B1 1.1
		(1)
(c)	<i>x</i> Ñ 4	B1 1.1
		(1)
(d)	<i>k</i> >1.5	B1 2.2
		(1)
	·	(4 marks
Notes:		
See m/sche	me	

Question	Scheme	Marks	AOs
5(a)	$f(-3) = (-3)^3 + 3 \times (-3)^2 - 4 \times (-3) - 12$	M1	1.1b
	$f(-3) = 0 \Rightarrow (x+3)$ is a factor \Rightarrow Hence $f(x)$ is divisible by $(x+3)$.	A1	2.4
		(2)	
(b)	$x^{3} + 3x^{2} - 4x - 12 = (x+3)(x^{2} - 4)$	M1	1.1b
	=(x+3)(x+2)(x-2)	dM1	1.1b
		Al	1.1b
		(3)	
(c)	$\frac{x^3 + 3x^2 - 4x - 12}{x^3 + 5x^2 + 6x} = \frac{\dots}{x(x^2 + 5x + 6)}$	M1	3.1a
	$=\frac{(x+3)(x+2)(x-2)}{x(x+3)(x+2)}$	dM1	1.1b
	$=\frac{(x-2)}{x}=1-\frac{2}{x}$	A1	2.1
		(3)	
		(8 n	narks)
Notes:			
(a) M1: Attemp	pts f(-3)		
A1: Achiev	ves $f(-3) = 0$ and explains that $(x+3)$ is a factor and hence $f(x)$ is divisi	ible by $(x - x)$	+3).
(b) M1: Attemp	pts to divide by $(x+3)$ to get the quadratic factor.		
-	ision look for the first two terms. ie $x^2 + 0x$ $x+3)x^3+3x^2-4x-12$ x^3+3x^2		
By insp	bection look for the first and last term $x^3 + 3x^2 - 4x - 12 = (x+3)(x^2 +x)$	±4)	
	n attempt at factorising their $(x^2 - 4)$. (Need to check first and last terms		
	(x+3)(x+2)(x-2)		
(c)			
	a common factor of x out of the denominator and writes the numerator in 3 + 2 + 2 + 12 + 4(-3 + 5 + 2 + 6) + D(-2 + 5 + 6)		
	natively rewrites to $x^3 + 3x^2 - 4x - 12 = A(x^3 + 5x^2 + 6x) + B(x^2 + 5x + 6)$)	
	er factorises the denominator and cancels rnatively compares terms or otherwise to find either A or B		
	$r^3 + 3r^2 - 4r - 12$ 2		
A1: Shows	that $\frac{x^3 + 3x^2 - 4x - 12}{x^3 + 5x^2 + 6x} = 1 - \frac{2}{x}$ with no errors or omissions		

$$x^{3} + 3x^{2} - 4x - 12 \equiv 1\left(x^{3} + 5x^{2} + 6x\right) - 2\left(x^{2} + 5x + 6\right) \text{ and hence } \frac{x^{3} + 3x^{2} - 4x - 12}{x^{3} + 5x^{2} + 6x} = 1 - \frac{2}{x}$$

Question	Scheme	Marks	AOs
6(i)	Tries at least one value in the interval Eg $4^2 - 4 - 1 = 11$	M1	1.11
	States that when $n = 8$ it is FALSE and provides evidence $8^2 - 8 - 1 = 55 = (11 \times 5)$ Hence NOT PRIME	A1	2.4
		(2)	
(ii)	Knows that an odd number is of the form $2n+1$	B1	3.1a
	Attempts to simplify $(2n+1)^3 - (2n+1)^2$	M1	2.1
	and factorise $8n^3 + 8n^2 + 2n = 2(4n^3 + 4n^2 + 1n) =$	dM1	1.11
	with statement $2 \times$ is always even	A1	2.4
		(4)	
Alt (ii)	Let the odd number be 'n' and attempts $n^3 - n^2$	B1	3.1
	Attempts to factorise $n^3 - n^2 = n^2 (n-1)$	M1	2.1
	States that n^2 is odd (odd × odd) and $(n-1)$ is even (odd -1)	dM1	1.11
	States that the product is even (odd×even)	A1	2.4
	·	(6 n	narks

Notes. See

(i)

M1: Attempts any $n^2 - n - 1$ for *n* in the interval. It is acceptable just to show $8^2 - 8 - 1 = 55$ A1: States that when n = 8 it is FALSE and provides evidence. A comment that $55 = 11 \times 5$ and hence not prime is required

(ii)

See scheme for two examples of proof

Note that Alt (i) works equally well with an odd number of the form 2n-1

For example $(2n-1)^3 - (2n-1)^2 = (2n-1)^2 \{2n-1-1\} = (2n-1)^2 \{2n-2\} = 2 \times (2n-1)^2 \{n-1\}$

Question	Scheme	Marks	AOs
7 (a)	$\left(1+\frac{3}{x}\right)^2 = 1+\frac{6}{x}+\frac{9}{r^2}$	M1	1.1b
	$\begin{pmatrix} x \end{pmatrix}$ $x x^2$	Al	1.1b
		(2)	
(b)	$\left(1+\frac{3}{4}x\right)^{6} = 1+6\times\left(\frac{3}{4}x\right)+$	B1	1.1b
	$\left(1 + \frac{3}{4}x\right)^{6} = 1 + 6 \times \left(\frac{3}{4}x\right) + \frac{6 \times 5}{2} \times \left(\frac{3}{4}x\right)^{2} + \frac{6 \times 5 \times 4}{3 \times 2} \times \left(\frac{3}{4}x\right)^{3} + \dots$	M1	1.1b
		A1	1.1b
	$=1+\frac{9}{2}x+\frac{135}{16}x^2+\frac{135}{16}x^3+\dots$	A1	1.1b
		(4)	
(c)	$\left(1+\frac{3}{x}\right)^2 \left(1+\frac{3}{4}x\right)^6 = \left(1+\frac{6}{x}+\frac{9}{x^2}\right) \left(1+\frac{9}{2}x+\frac{135}{16}x^2+\frac{135}{16}x^3+\dots\right)$		
	Coefficient of $x = \frac{9}{2} + 6 \times \frac{135}{16} + 9 \times \frac{135}{16} = \frac{2097}{16}$	M1	2.1
	2 16 16 16	Al	1.1b
		(2)	
		(8 n	narks)
Notes:			
(a) M1: Attemp	ots $\left(1+\frac{3}{x}\right)^2 = A + \frac{B}{x} + \frac{C}{x^2}$		
A1: (1+	$\left(\frac{3}{x}\right)^2 = 1 + \frac{6}{x} + \frac{9}{x^2}$		
M1: Attemp least once in A1: Binomi	o terms correct, may be un-simplified ots the binomial expansion. Implied by the correct coefficient and power a term 3 or 4 al expansion correct and un-simplified al expansion correct and simplified.	of x seen a	at
(c)			
	nes all relevant terms for their $\left(1 + \frac{A}{x} + \frac{B}{x^2}\right)\left(1 + Cx + Dx^2 + Ex^3 +\right)$ to find	nd the	
coefficient of A1: Fully co			

Question	Scheme	Marks	AOs
8(a)	(i) $\int_{1}^{a} \sqrt{8x} dx = \sqrt{8} \times \int_{1}^{a} \sqrt{x} dx = 10\sqrt{8} = 20\sqrt{2}$	M1 A1	2.2a 1.1b
	(ii) $\int_{0}^{a} \sqrt{x} dx = \int_{0}^{1} \sqrt{x} dx + \int_{1}^{a} \sqrt{x} dx = \left[\frac{2}{3}x^{\frac{3}{2}}\right]_{0}^{1} + 10 = \frac{32}{3}$	M1 A1	2.1 1.1b
		(4)	
(b)	$R = \int_{1}^{a} \sqrt{x} \mathrm{d}x = \left[\frac{2}{3}x^{\frac{3}{2}}\right]_{1}^{a}$	M1 A1	1.1b 1.1b
	$\frac{2}{3}a^{\frac{3}{2}} - \frac{2}{3} = 10 \implies a^{\frac{3}{2}} = 16 \implies a = 16^{\frac{2}{3}}$	dM1	3.1a
	$\Rightarrow a = 2^{4 \times \frac{2}{3}} = 2^{\frac{8}{3}}$	A1	2.1
		(4)	
		(8 n	narks)
	entifying and attempting to use $\int_{0}^{a} \sqrt{x} dx = \int_{0}^{1} \sqrt{x} dx + \int_{1}^{a} \sqrt{x} dx$ or exact equivalent		
(b) M1: Attemp	pts to integrate, $x^{\frac{1}{2}} \rightarrow x^{\frac{3}{2}}$ $\overline{x} dx = \left[\frac{2}{3}x^{\frac{3}{2}}\right]_{1}^{a}$		
limits and p $a = 2^k$. In set	whole strategy to find <i>a</i> . In the scheme it is awarded for setting $\left[\dots x^{\frac{3}{2}} \right]_{1}^{a}$ roceeding using correct index work to find <i>a</i> . Alternatively a candidate c uch a case it is awarded for setting $\left[\dots x^{\frac{3}{2}} \right]_{1}^{2^{k}} = 10$, using both limits and p x work to $k=$	ould assur	ne
A1: $a = 2^{4\times \frac{3}{2}}$	$2^{\frac{3}{3}} = 2^{\frac{8}{3}}$		
In the altern	ative case, a further statement must be seen following $k = \frac{8}{3}$ Hence Tru-	e	

Question	Scheme	Marks	AOs
9	$2\log_4(2-x) - \log_4(x+5) = 1$		
	Uses the power law $\log_4 (2-x)^2 - \log_4 (x+5) = 1$	M1	1.1b
	Uses the subtraction law $\log_4 \frac{(2-x)^2}{(x+5)} = 1$	M1	1.1b
	$\frac{(2-x)^2}{(x+5)} = 4 \rightarrow 3\text{TQ in } x$	dM1	3.1a
	$x^2 - 8x - 16 = 0$	A1	1.1b
	$(x-4)^2 = 32 \Longrightarrow x =$	M1	1.1b
	$x = 4 - 4\sqrt{2}$ oe only	A1	2.3
		(6)	
		(6 n	narks)
Notes:			
M1: Uses th	he power law of logs $2\log_4(2-x) = \log_4(2-x)^2$		
M1: Uses th	he subtraction law of logs following the above $\log_4(2-x)^2 - \log_4(x+5) = \log_4(x+5)$	$g_4 \frac{\left(2-x\right)^2}{\left(x+5\right)}$	
Alternativel	y uses the addition law following use of $1 = \log_4 4$ That is $1 + \log_4 (x + 5)$	$) = \log_4 4($	x+5)
correct use	can be awarded for the overall strategy leading to a $3TQ$ in x . It is dependent of both previous M's and for undoing the logs to reach a $3TQ$ equation in	-	the
	orrect equation in x e correct method of solving their 3TQ =0		
	$-4\sqrt{2}$ or exact equivalent only. (For example accept $x = 4 - \sqrt{32}$)		

Question	Scheme	Marks	AOs
10(a)	Attempts to find the radius $\sqrt{(2-2)^2+(5-3)^2}$ or radius ²	M1	1.1b
	Attempts $(x-2)^2 + (y-5)^2 = 'r'^2$	M1	1.1b
	Correct equation $(x-2)^{2} + (y-5)^{2} = 20$	A1	1.1b
		(3)	
(b)	Gradient of radius <i>OP</i> where <i>O</i> is the centre of $C = \frac{5-3}{22} = \left(\frac{1}{2}\right)$	M1	1.1b
	Equation of <i>l</i> is $-2 = \frac{y-3}{x+2}$	dM1	3.1a
	Any correct form $y = -2x - 1$	A1	1.1b
	Method of finding k Substitute $x = 2$ into their $y = -2x - 1$	M1	2.1
	k = -5	A1	1.1b
		(5)	
		(8 n	narks
	eme or states form of circle is $(x-2)^2 + (y-5)^2 = r^{12}$	(8 n	narks
(a) M1: As sch M1: As sch A1: For a co If students u A1: $x^2 + y^2$ (b) M1: Attemp dM1: For a	eme or substitutes $(-2,3)$ into $(x-2)^2 + (y-5)^2 = r'^2$ orrect equation use $x^2 + y^2 + 2fx + 2gy + c = 0$ M1: $f = 2, g = 5$ M1: substitutes $(2,5)^2 - 4x - 10y + 9 = 0$ pts to find the gradient of <i>OP</i> where <i>O</i> is the centre of <i>C</i> a complete strategy of finding the equation of <i>l</i> using the perpendicular g	to find valu	le of c
(a) M1: As sch M1: As sch A1: For a co If students u A1: $x^2 + y^2$ (b) M1: Attemp dM1: For a and the poin	eme or substitutes $(-2,3)$ into $(x-2)^2 + (y-5)^2 = r'^2$ orrect equation use $x^2 + y^2 + 2fx + 2gy + c = 0$ M1: $f = 2, g = 5$ M1: substitutes $(2,5)^2 - 4x - 10y + 9 = 0$ pts to find the gradient of <i>OP</i> where <i>O</i> is the centre of <i>C</i> a complete strategy of finding the equation of <i>l</i> using the perpendicular g	to find valu	le of c
(a) M1: As sch M1: As sch A1: For a co If students u A1: $x^2 + y^2$ (b) M1: Attemp dM1: For a and the point A1: Any co M1: Scored their $y = -2$	eme or substitutes $(-2,3)$ into $(x-2)^2 + (y-5)^2 = r'^2$ orrect equation use $x^2 + y^2 + 2fx + 2gy + c = 0$ M1: $f = 2, g = 5$ M1: substitutes $(2,5)^2 - 4x - 10y + 9 = 0$ pts to find the gradient of <i>OP</i> where <i>O</i> is the centre of <i>C</i> a complete strategy of finding the equation of <i>l</i> using the perpendicular part $(-2,3)$.	to find valu gradient to o	ue of <i>c</i>
(a) M1: As sch M1: As sch A1: For a co If students u A1: $x^2 + y^2$ (b) M1: Attemp dM1: For a and the point A1: Any co M1: Scored their $y = -2$ A1: $k = -5$ Alt using P M1: Attemp dM1: For the in k A1: A correct	eme or substitutes $(-2,3)$ into $(x-2)^2 + (y-5)^2 = r'^2$ orrect equation use $x^2 + y^2 + 2fx + 2gy + c = 0$ M1: $f = 2, g = 5$ M1: substitutes $(2,5)^2 - 4x - 10y + 9 = 0$ opts to find the gradient of <i>OP</i> where <i>O</i> is the centre of <i>C</i> a complete strategy of finding the equation of <i>l</i> using the perpendicular perpendicular for $(-2,3)$ rrect form of <i>l</i> Eg $y = -2x - 1$ l for the key step of finding <i>k</i> . In this method they are required to substitute	to find value gradient to the function of C)	ue of <i>c</i> <i>OP</i>

Question	Scheme	Marks	AOs
11(i)	$(2\theta + 10^\circ) = \arcsin(-0.6)$	M1	1.1b
	$(2\theta + 10^\circ) = -143.13^\circ, -36.87^\circ, 216.87^\circ, 323.13^\circ$ (Any two)	A1	1.1b
	Correct order to find $\theta = \dots$	dM1	1.1b
	Two of $\theta = -76.6^{\circ}, -23.4^{\circ}, 103.4^{\circ}, 156.6^{\circ}.$	A1	1.1b
	$\theta = -76.6^{\circ}, -23.4^{\circ}, 103.4^{\circ}, 156.6^{\circ}, \text{ only}$	A1	2.1
		(5)	
(ii)	(a) Explains that the student has not considered the negative value of $x(=-29.0^\circ)$ when solving $\cos x = \frac{7}{8}$	B1	2.3
	Explains that the student should check if any solutions of $\sin x = 0$ (the cancelled term) are solutions of the given equation. $x = 0^{\circ}$ should have been included as a solution	B1	2.3
	(b) Attempts to solve $4\alpha + 199^{\circ} = (360 - 29.0)^{\circ}$	M1	2.2a
	$\alpha = 33.0^{\circ}$	A1	1.1b
		(4)	
		(9 n	narks)
Notes:			
	ots $\operatorname{arcsin}(-0.6)$ implied by any correct answer o of -143.13° , -36.87° , 216.87° , 323.13°		
	ect method to find any value of θ		
-	$\theta = -76.6^{\circ}, -23.4^{\circ}, 103.4^{\circ}, 156.6^{\circ}.$		
	olution leading to all four answers and no extras .6°, -23.4°, 103.4°, 156.6°, only		
(ii)(a) B1: See sch B1: See sch			
(ii)(b)			
	ducing the smallest positive solution occurs when $4\alpha + 199^\circ = (360 - 29)^\circ$	9.0)°	
A1: $\alpha = 33^{\circ}$	2 		

Question	Scheme			AOs
12(a)	Sets 3x	B1	1.1a	
	$2\sqrt{x} = 16 - 5x$ $4x = (16 - 5x)^2 \implies x =$	$5x + 2\sqrt{x} - 16 = 0$ $\Rightarrow (5\sqrt{x} \pm 8)(\sqrt{x} \pm 2) = 0$	M1	3.1a
	$25x^2 - 164x + 256 = 0$	$\left(5\sqrt{x}-8\right)\left(\sqrt{x}+2\right)=0$	A1	1.1b
	$(25x-64)(x-4) = 0 \Longrightarrow x =$	$\sqrt{x} = \frac{8}{5}, (-2) \Longrightarrow x =$	M1	1.1b
	$x = \frac{64}{25}$	only	A1	2.3
			(5)	
(b)	Attempts to solve $3x - 2\sqrt{x} = 0$		M1	2.1
	Correct solution $x = \frac{4}{9}$	A1	1.1b	
	$y\tilde{N}3x-2\sqrt{x},$	$y > 8x - 16 \ x \ddot{\mathrm{O}} \ \frac{4}{9}$	B1ft	1.1b
			(3)	
	1		(8 n	narks)

Notes:

(a)

B1: Sets the equations equal to each other and achieves a correct equation

M1: Awarded for the key step in solving the problem. This can be awarded via two routes. Both routes must lead to a value for x.

- Making the \sqrt{x} term the subject and squaring both sides (not each term)
- Recognising that this is a quadratic in \sqrt{x} and attempting to factorise $\Rightarrow (5\sqrt{x} \pm 8)(\sqrt{x} \pm 2) = 0$

A1: A correct intermediate line $25x^2 - 164x + 256 = 0$ or $(5\sqrt{x} - 8)(\sqrt{x} + 2) = 0$

M1: A correct method to find at least one value for x. Way One it is for factorising (usual rules), Way Two it is squaring at least one result of their \sqrt{x}

A1: Realises that $x = \frac{64}{25}$ is the only solution $x = \frac{64}{25}, 4$ is A0 (b) M1: Attempts to solve $3x - 2\sqrt{x} = 0$ For example Allow $3x = 2\sqrt{x} \Rightarrow 9x^2 = 4x \Rightarrow x = ...$ Allow $3x = 2\sqrt{x} \Rightarrow x^{\frac{1}{2}} = \frac{2}{3} \Rightarrow x = ...$ A1: Correct solution to $3x - 2\sqrt{x} = 0 \Rightarrow x = \frac{4}{9}$ B1: For a consistent solution defining *R* using either convention Either $y\tilde{N}3x - 2\sqrt{x}, y > 8x - 16x\ddot{O}\frac{4}{9}$ Or $y < 3x - 2\sqrt{x}, y\ddot{O}8x - 16x > \frac{4}{9}$

(d) The 100 (d) The 17 1 90% Her 90% Her 7 1 90% Her 7 1 90% Her 7 1 90% Her 7 1 90% Her 7 1 90% Her 7 1 90% Her 7 1 90%	m ² = $0.2e^{0.3t}$ Rate of change = gradient = $\frac{dA}{dt} = 0.06e^{0.3t}$ $t = 5 \Rightarrow$ Rate of Growth is $0.06e^{1.5} = 0.269 \text{ m}^2/\text{day}$ = $0.2e^{0.3t} \Rightarrow e^{0.3t} = 500$ $\Rightarrow t = \frac{\ln(500)}{0.3} = 20.7 \text{ days}$ 20 days 17 hours = model given suggests that the pond is fully covered after 20 days hours. Observed data is inconsistent with this as the pond is only 6 covered by the end of one month (28/29/30/31 days). here the model is not accurate	B1 (1) M1 A1 (2) M1 A1 (4) B1	3.4 3.1b 1.1b 3.1a 1.1b 3.2a 3.5a
(c) 100 (c) 100 (d) The 17 1 90% Her 7 800 Her 7 800 Her 7 90%	$t = 5 \Rightarrow$ Rate of Growth is $0.06e^{1.5} = 0.269 \text{ m}^2/\text{day}$ $t = 0.2e^{0.3t} \Rightarrow e^{0.3t} = 500$ $\Rightarrow t = \frac{\ln(500)}{0.3} = 20.7 \text{ days}$ 20 days 17 hours the model given suggests that the pond is fully covered after 20 days hours. Observed data is inconsistent with this as the pond is only to covered by the end of one month (28/29/30/31 days).	M1 A1 (2) M1 A1 M1 A1 (4)	1.1b 3.1a 1.1b 1.1b 3.2a
(c) 100 (c) 100 (d) The 17 1 90% Her 7 800 Her 7 800 Her 7 90%	$t = 5 \Rightarrow$ Rate of Growth is $0.06e^{1.5} = 0.269 \text{ m}^2/\text{day}$ $t = 0.2e^{0.3t} \Rightarrow e^{0.3t} = 500$ $\Rightarrow t = \frac{\ln(500)}{0.3} = 20.7 \text{ days}$ 20 days 17 hours the model given suggests that the pond is fully covered after 20 days hours. Observed data is inconsistent with this as the pond is only to covered by the end of one month (28/29/30/31 days).	A1 (2) M1 A1 M1 A1 (4)	1.1b 3.1a 1.1b 1.1b 3.2a
(c) 100 (c) 100 (d) The 17 1 90% Her 80% 100 100 100 100 100 100 100 1	$\Rightarrow t = \frac{\ln(500)}{0.3} = 20.7 \text{ days} \qquad 20 \text{ days } 17 \text{ hours}$ $\Rightarrow t = \frac{\ln(500)}{0.3} = 20.7 \text{ days} \qquad 20 \text{ days } 17 \text{ hours}$ The model given suggests that the pond is fully covered after 20 days hours. Observed data is inconsistent with this as the pond is only 6 covered by the end of one month (28/29/30/31 days).	(2) M1 A1 M1 A1 (4)	3.1a 1.1b 1.1b 3.2a
(d) The 171 90% Her Notes: (a) B1: 0.2 m ² oe	$\Rightarrow t = \frac{\ln(500)}{0.3} = 20.7 \text{ days} \qquad 20 \text{ days } 17 \text{ hours}$ e model given suggests that the pond is fully covered after 20 days hours. Observed data is inconsistent with this as the pond is only 6 covered by the end of one month (28/29/30/31 days).	M1 A1 M1 A1 (4)	1.1b 1.1b 3.2a
(d) The 171 90% Her Notes: (a) B1: 0.2 m ² oe	$\Rightarrow t = \frac{\ln(500)}{0.3} = 20.7 \text{ days} \qquad 20 \text{ days } 17 \text{ hours}$ e model given suggests that the pond is fully covered after 20 days hours. Observed data is inconsistent with this as the pond is only 6 covered by the end of one month (28/29/30/31 days).	A1 M1 A1 (4)	1.1b 1.1b 3.2a
(a) Notes: (a) B1: 0.2 m ² oe	e model given suggests that the pond is fully covered after 20 days nours. Observed data is inconsistent with this as the pond is only 6 covered by the end of one month (28/29/30/31 days).	A1 (4)	3.2a
(a) Notes: (a) B1: 0.2 m ² oe	hours. Observed data is inconsistent with this as the pond is only 6 covered by the end of one month (28/29/30/31 days).		3.5a
(a) Notes: (a) B1: 0.2 m ² oe	hours. Observed data is inconsistent with this as the pond is only 6 covered by the end of one month (28/29/30/31 days).	B1	3.5a
(a) B1: 0.2 m ² oe			
(a) B1: 0.2 m ² oe		(1)	
(a) B1: 0.2 m ² oe		(8 r	narks)
B1: 0.2 m^2 oe			
(b)			
(b)			
	f change to gradient and differentiates $0.2e^{0.3t} \rightarrow ke^{0.3t}$		
(c)	ver 0.269 m ² /day		
	$A = 100$ and proceeds to $e^{0.3t} = k$		
A1: $e^{0.3t} = 500$			
M1: Correct met A1: 20 days 17 h	hod when proceeding from $e^{0.3t} = k \Longrightarrow t =$		
(d) B1: Valid conclu			
DI: vana conclu	sion following through on their answer to (c).		

Question	Scheme	Marks	AOs	
14	$y = (x-2)^{2} (x+3) = (x^{2}-4x+4)(x+3) = x^{3}-1x^{2}-8x+12$	B1	1.1b	
	An attempt to find x coordinate of the maximum point. To score this you must see either • an attempt to expand $(x-2)^2(x+3)$, an attempt to			
	• an attempt to differentiate $(x-2)^2(x+3)$ by the product rule	M1	3.1a	
	followed by an attempt at solving $\frac{dy}{dx} = 0$			
	$y = x^3 - 1x^2 - 8x + 12 \Longrightarrow \frac{dy}{dx} = 3x^2 - 2x - 8$	M1	1.1b	
	Maximum point occurs when $\frac{dy}{dx} = 0 \Rightarrow (x-2)(3x+4) = 0$	M1	1.1b	
	$\Rightarrow x = -\frac{4}{3}$	A1	1.1b	
	An attempt to find the area under $y = (x-2)^2 (x+3)$ between two values. To score this you must see an attempt to expand $(x-2)^2 (x+3)$ followed by an attempt at using two limits	M1	3.1a	
	Area = $\int (x^3 - 1x^2 - 8x + 12) dx = \left[\frac{x^4}{4} - \frac{x^3}{3} - 4x^2 + 12x\right]$	M1	1.1b	
	Uses a top limit of 2 and a bottom limit of their $x = -\frac{4}{3} R = \left[\frac{x^4}{4} - \frac{x^3}{3} - 4x^2 + 12x\right]_{-\frac{4}{3}}^2$	M1	2.2a	
	$Uses = \frac{28}{3} - \frac{1744}{81} = \frac{2500}{81}$	A1	2.1	
		(9)		
	(9 marks			

Notes:

B1: Expands $(x-2)^2 (x+3)$ to $x^3 - 1x^2 - 8x + 12$ seen at some point in their solution. It may appear just on their integral for example. **M1:** This is a problem solving mark for knowing the method of finding the maximum point. You should expect to see the key points used (i) differentiation (ii) solution of their $\frac{dy}{dx} = 0$ **M1:** For correctly differentiating their cubic with at least two terms correct (for their cubic). dy

M1: For setting their $\frac{dy}{dx} = 0$ and solves using a correct method (including calculator methods)

A1: $\Rightarrow x = -\frac{4}{3}$

M1: This is a problem solving mark for knowing how integration is used to find the area underneath a curve between two points.

M1: For correctly integrating their cubic with at least two correct terms (for their cubic).

M1: For deducing the top limit is 2, the bottom limit is their $x = -\frac{4}{3}$ and applying these correctly within their integration.

A1: Shows above steps clearly and proceeds to $R = \frac{2500}{81}$