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A card is selected at random from a pack of 52 playing cards. 
Let 𝐴 be the event that the card is an ace. 
Let 𝐷 be the event that the card is a diamond. Find:
a) 𝑃 𝐴 ∩ 𝐷
b) 𝑃 𝐴 ∪ 𝐷
c) 𝑃 𝐴ᇱ

d) 𝑃 𝐴ᇱ ∩ 𝐷
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Given that: 
𝑃 𝐴 = 0.3
𝑃 𝐵 = 0.4
𝑃 𝐴 ∩ 𝐵 = 0.25
Explain why events 𝐴 and 𝐵 are not independent.
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Given that: 
𝑃 𝐴 = 0.3
𝑃 𝐵 = 0.4
𝑃 𝐴 ∩ 𝐵 = 0.25
𝑃 𝐶 = 0.2
𝐴 and 𝐶 are mutually exclusive. 
Events 𝐵 and 𝐶 are independent.

a) Draw a Venn diagram to illustrate the events 𝐴, 𝐵 and 𝐶, showing the probabilities for each region.
b) Find 𝑃 𝐴 ∩ 𝐵ᇱ ∪ 𝐶
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The events A and B are independent.
Find the value of p.
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Events A and B are independent.
𝑃 𝐴 = 𝑥
𝑃 𝐵 = 𝑦

Find:
a) 𝑃 𝐴 ∩ 𝐵
b) 𝑃(𝐴 ∪ 𝐵′)



Worked Example

Page 19

ξ = 𝑀𝑜𝑛𝑡ℎ𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑦𝑒𝑎𝑟
𝐴 = 𝑀𝑜𝑛𝑡ℎ𝑠 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑤𝑖𝑡ℎ 𝐴
B = 𝑀𝑜𝑛𝑡ℎ𝑠 𝑤𝑖𝑡ℎ 𝑠𝑖𝑥 𝑙𝑒𝑡𝑡𝑒𝑟𝑠
Draw a Venn diagram to represent this information.
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Represent as a Venn diagram:
ξ =Positive integers between 10 and 20 inclusive
A = {Multiples of 3}
B = {Multiples of 6}
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In a group of 30 mathematicians:
• 15 have studied Calculus.
• 22 have studied Topology. 
• Some have studied both.
• 3 mathematicians have not yet studied either Calculus or topology

Find the number of mathematicians who have studied both Calculus and Topology.
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𝑃 𝐵 𝐴 =
௉ ஺∩஻

௉ ஺

• This will work if A and B are NOT independent

In fact, if A and B are independent then:

𝑃 𝐵 𝐴 = 𝑃(𝐵)
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A group is made up of 42 men and 68 women.
36 of the women and 24 of the men are left-handed.
a) Draw a two-way table to show this information.
b) One person is chosen at random. Find:

i) 𝑃(left-handed)
ii) 𝑃(left-handed | man)
iii) 𝑃(woman | left-handed)
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The following two-way table shows what foreign language students in Year 9 study.
𝐵 is the event that the student is a boy. 
𝐹 is the event they chose French as their language.

Determine:
a) 𝑃 𝐹 𝐵ᇱ

b) 𝑃 𝐵 𝐹ᇱ

𝑩′𝑩

3814𝑭

2226𝑭′
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A school has 75 students in year 12. Of these students, 25 study only humanities subjects (𝐻) and 37 study only science subjects 
(𝑆). 11 students study both science and humanities subjects.
a) Draw a two-way table to show this information.
b) Find:

i) 𝑃 𝑆ᇱ ∩ 𝐻ᇱ

ii) 𝑃 𝑆 𝐻
iii) 𝑃(𝐻|𝑆ᇱ)
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Two four-sided dice are thrown together, and the sum of the numbers shown is recorded.
a) Draw a sample-space diagram showing the possible outcomes.
b) Given that at least one dice lands on a 3, find the probability that the sum on the two dice is exactly 5.
c) State one modelling assumption used in your calculations.
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Using the Venn diagram, determine:

a) 𝑃 𝐴 𝐵  
b) 𝑃 𝐴′ 𝐵′
c) 𝑃 𝐵 𝐴 ∪ 𝐵
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Given that 𝑃 𝐴 = 0.5 and 𝑃 𝐴 ∩ 𝐵 = 0.3, determine:
𝑃 𝐵 𝐴
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Given that 𝑃 𝑌 = 0.6 and 𝑃 𝑋 ∩ 𝑌 = 0.4,
determine:
𝑃 𝑋ᇱ 𝑌
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Given that 𝑃 𝐴 = 0.5, 𝑃 𝐵 = 0.5 and 𝑃 𝐴 ∩ 𝐵 = 0.4, determine:
𝑃 𝐵 𝐴ᇱ
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Given that 
𝑃 𝐸 = 0.28
𝑃 𝐸 ∪ 𝐹 = 0.76
𝑃 𝐸 ∩ 𝐹ᇱ = 0.11
Draw a Venn diagram to illustrate the probabilities of each region.
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Given that 
𝑃 𝐴 ∩ 𝐵ᇱ = 0.4
𝑃 𝐴 ∪ 𝐵 = 0.75
Determine:
a) 𝑃 𝐵
b) 𝑃 𝐴ᇱ ∩ 𝐵ᇱ
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Given that 
𝑃 𝐴ᇱ = 0.7,
𝑃 𝐵ᇱ = 0.2
𝑃 𝐴 ∩ 𝐵ᇱ = 0.1
Determine:
a) 𝑃 𝐴 ∪ 𝐵ᇱ

b) 𝑃 𝐵|𝐴′
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The events A and B are independent.

𝑃 𝐵 𝐶 =
5

11
a) Find the values of 𝑝, 𝑞 and 𝑟

b) Find 𝑃(𝐴 ∪ 𝐶|𝐵)



Worked Example

Page 52

𝐴 and 𝐵 are two events such that 𝑃 𝐴 = 0.55, 𝑃 𝐵 = 0.4 and 𝑃 𝐴 ∩ 𝐵 = 0.15
a) Draw a Venn diagram showing the probabilities for events 𝐴 and 𝐵
b) Find:

i) 𝑃(𝐴|𝐵)
ii) 𝑃(𝐵|(𝐴 ∪ 𝐵))
iii) 𝑃(𝐴′|𝐵′)



2.4 Probability Formulae

If events are NOT mutually exclusive, then:

P A ∪ 𝐵 = P A + P(B) − 𝑃(𝐴 ∩ 𝐵)

Addition formulae

In fact, if the events were mutually exclusive then 𝑃 𝐴 ∩ 𝐵 = 0, so we get back to

P A ∪ 𝐵 = P A + P(B)
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If events 𝑨 and 𝑩 are independent.

P 𝐴 ∩ 𝐵 = 𝑃 𝐴 × 𝑃 𝐵
𝑃 𝐴 𝐵 = 𝑃 𝐴

If events 𝑨 and 𝑩 are mutually exclusive:

𝑃 𝐴 ∩ 𝐵 = 0
𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃 𝐵

In general:

P 𝐴 𝐵 =
௉ ஺∩஻

௉ ஻

P 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃 𝐵 − 𝑃 𝐴 ∩ 𝐵

We first encountered this in 
the previous section.

This is known as the Addition Law.
Informal Proof: If we added the 
probabilities in the 𝐴 and 𝐵 sets in the 
Venn Diagram, we’d be double 
counting the intersection, so subtract 
so that it’s only counted once.
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𝐴 and 𝐵 are two events, with 𝑃(𝐴) = 0.6, 𝑃 𝐵 = 0.7 and 𝑃 𝐴 ∪ 𝐵 = 0.9

Find 𝑃(𝐴 ∩ 𝐵)
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Two events 𝐴 and 𝐵 are independent.

𝑃 𝐴 =
1

3

𝑃 𝐵 =
1

4

Find:
a) 𝑃 𝐴 ∩ 𝐵

b) 𝑃 𝐴 𝐵

c) 𝑃(𝐴 ∪ 𝐵)
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𝐶 and 𝐷 are two events such that 
𝑃 𝐶 = 0.2
𝑃 𝐷 = 0.6
𝑃 𝐶 𝐷 = 0.3
Find:
a) 𝑃 𝐶 ∩ 𝐷
b) 𝑃 𝐷 𝐶
c) 𝑃 𝐶 ∪ 𝐷
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𝐴 and 𝐵 are two independent events such that 

𝑃 𝐴 =
1

4

𝑃 𝐴 ∪ 𝐵 =
2

3

Find:
a) 𝑃 𝐵
b) 𝑃 𝐴ᇱ ∩ 𝐵
c) 𝑃(𝐵ᇱ|𝐴)



Worked Example

Page 64

There are three events: 𝐴, 𝐵 and 𝐶.
𝐴 and 𝐵 are mutually exclusive.
𝐴 and 𝐶 are independent.
𝑃 𝐴 = 0.2
𝑃 𝐵 = 0.4
𝑃 𝐴 ∪ 𝐶 = 0.7
Find:
a) 𝑃 𝐴 𝐶
b) 𝑃 𝐴 ∪ 𝐵
c) 𝑃(𝐶)
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A

A’

B|A

B’|A
B|A’

B’|A’
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A bag contains 6 green beads and 4 yellow beads.
A bead is taken from the bag at random, the colour is recorded and it is not replaced.
A second bead is then taken from the bag and its colour recorded.
Given that both balls are the same colour, find the probability that they are both yellow.
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There are two bags.
Bag A contains 5 red balls and 5 blue balls
Bag B contains 3 red balls and 6 blue balls.
One ball is taken from bag A and placed in bag B. Then one ball is taken from bag B.
Find the probability that:
a) A red ball is taken from bag B.
b) Given that a red ball is taken from bag B, the ball taken from bag A was also red.
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On a randomly chosen day the probability that a person travels to school by car, bicycle or on foot is ଵ
ଶ

,
ଵ

଺
and ଵ

ଷ
respectively.

The probability of being late when using these methods of travel is ଵ
ହ

,
ଶ

ହ
and ଵ

ଵ଴
respectively.

Given that the person is late, find the probability that they did not travel on foot.
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A bag contains 9 blue balls and 3 red balls.
A ball is selected at random from the bag and its colour is recorded.
The ball is not replaced.
A second ball is selected at random and its colour is recorded.
Find the probability that:
a) The second ball selected is red
b) Both balls selected are red, given that the second ball selected is red.
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In bag A there are 5 white and 2 red counters.
In bag B there are 3 white counters and 7 red counters.
A person takes at random one counter from A and one counter from B.
Find the probability that the counters are the same colour.
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In bag A there are 5 white and 2 red counters.
In bag B there are 3 white counters and 7 red counters.
A person takes at random one counter from A and one counter from B.
Find the probability that the counters are different colours.
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A person plays a game of tennis and then a game of golf.
They can only win or lose each game.
The probability of winning tennis is 0.6
The probability of winning golf is 0.35
The results of each game are independent of each other.
Calculate the probability that the person wins at least one game.
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The table shows 50 students, who each study one language.
Two students are chosen at random.

Calculate the probability that the two chosen students study the same language.

SpanishJapanese

1513Female

175Male
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There are two bags with numbered discs as shown.

A person chooses a disc at random from bag 1.
If it is labelled 1, he puts the disc in bag 2.
If it is labelled 2, he does not put the disc in bag 2.
He then chooses a disc at random from bag 2.
He then adds the numbers of the two discs he selected to give his score.
Find the probability that his score is 4.
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Past paper practice by 
topic.  Both new and old 
specification can be 
found via this link on 
hgsmaths.com 
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