

Year 12 Pure Mathematics P1 9 Trigonometric Ratios Booklet

HGS Maths

Dr Frost Course

Name:

Class:

Contents

9.4 Solving Triangle Problems

- 9.5 Graphs of Sine, Cosine and Tangent
- 9.6 Transforming Trigonometric Graphs

Past Paper Practice Summary

9.4 Solving Triangle Problems

These are **<u>not</u>** in formulae booklet:

This version of the cosine rule is used to find a missing side if you know two sides and the angle between them:

$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$

$$A$$

$$C$$

$$B$$

$$B$$

Watch out You can exchange the letters depending on which side you want to find, as long as each side has the same letter as the **opposite** angle.

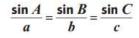
The sine rule can be used to work out missing sides or angles in triangles.

This version of the sine rule is used to find the length of a missing side:

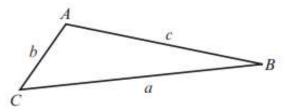
 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

You can use the standard trigonometric ratios for right-angled triangles to prove the sine rule:

This version of the sine rule is used to find a missing angle:



• Area = $\frac{1}{2}ab \sin C$



Notes			

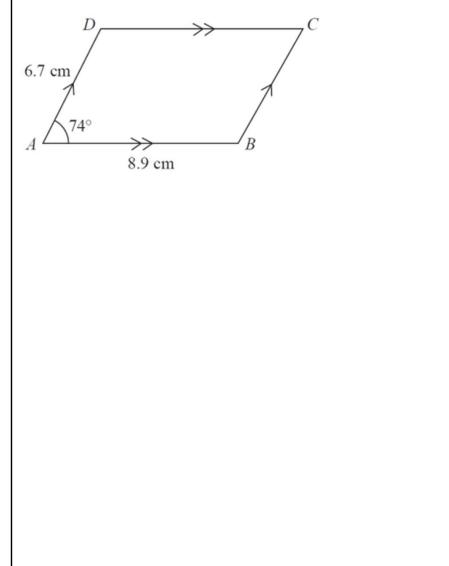
466e: Use the sine rule/Law of Sines and cosine rule/Law of Cosines within a single triangle.

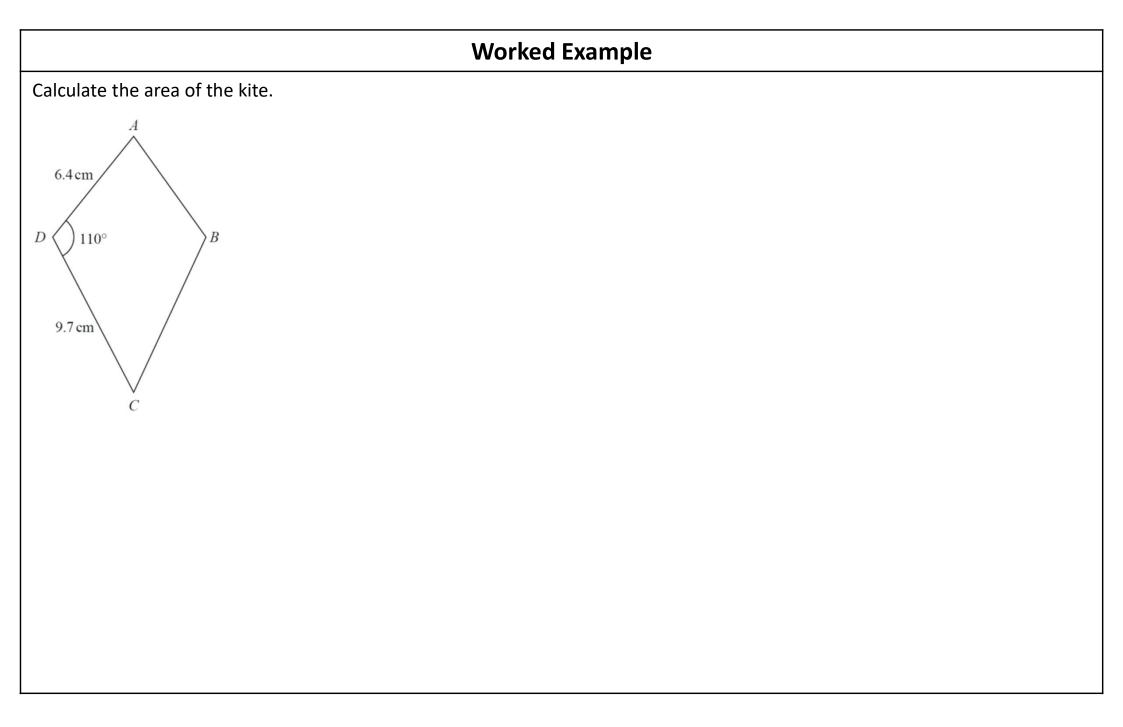
Find the value of x.

11 cm, 12 cm

Give your answer correct to 1 decimal place.

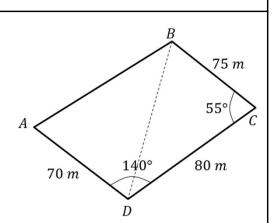
Calculate the area of the parallelogram.





The diagram shows the locations of four mobile phone masts in a field. BC = 75 m, CD = 80m, angle $BCD = 55^{\circ}$ and angle $ADC = 140^{\circ}$. In order that the masts do not interfere with each other, they must be at least 70m apart. Given that A is the minimum distance from D, find:

- a) The distance *A* is from *B*
- b) The angle *BAD*
- c) The area enclosed by the four masts.



Worked Example				

9.5 Graphs of Sine, Cosine and Tangent

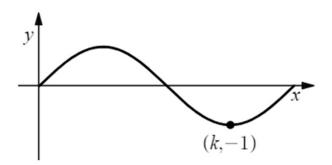
Sketch the graph of $y = \sin x$, $-360^{\circ} \le x \le 360^{\circ}$

Sketch the graph of $y = \cos x$, $-360^\circ \le x \le 360^\circ$

Sketch the graph of $y = \tan x$, $-360^\circ \le x \le 360^\circ$

431a: Plot and recognise graphs of $y = \sin(x)$ and $y = \cos(x)$ in degrees.

The diagram below shows part of the curve with equation $y = \sin x$.

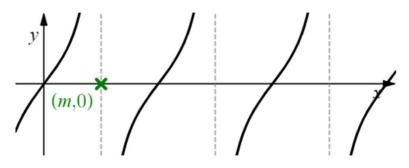


The point (k,-1) is on the curve, as shown on the diagram.

Find the value of k.

431b: Plot and recognise the graph $y = \tan(x)$ in degrees.

The diagram below shows part of the curve with equation $y = \tan x$.



The point (m,0) lies on an asymptote, as shown on the diagram.

Find the value of m.

431c: Appreciate the relationship between \sin and \cos for complementary angles.

Given $\sin x = \cos 330$ and $0^\circ \le x < 90^\circ$, determine the value of x.

- a) Sketch the graph of $y = \cos \theta$ in the interval $-360^{\circ} \le \theta \le 360^{\circ}$
- b) i) Sketch the graph of $y = \sin x$ in the interval $-180^{\circ} \le x \le 270^{\circ}$
 - ii) $sin(-30^{\circ}) = -0.5$. Use your graph to determine two further values of x for which sin x = -0.5

9.6 Transforming Trigonometric Graphs

Notes			

Sketch $y = \sin x - 2, 0 \le x \le 360^{\circ}$

Sketch $y = \cos(x + 45^{\circ}), 0 \le x \le 360^{\circ}$

Sketch $y = 4 \sin x$, $0 \le x \le 360^{\circ}$

Sketch $y = -\tan x$, $0 \le x \le 360^{\circ}$

Sketch $y = \sin\left(\frac{x}{2}\right), 0 \le x \le 360^{\circ}$

- a) $y = 3 \sin x, 0 \le x \le 360^{\circ}$
- b) $y = -\tan\theta$, $-180^\circ \le \theta \le 180^\circ$

- a) $y = -1 + \sin x, 0 \le x \le 360^{\circ}$
- b) $y = \frac{1}{2} + \cos x, 0 \le x \le 360^{\circ}$

- a) $y = \tan(\theta + 45^\circ), 0 \le \theta \le 360^\circ$
- b) $y = \cos(\theta 90^\circ), -360^\circ \le \theta \le 360^\circ$

- a) $y = \sin 2x, 0 \le x \le 360^{\circ}$
- b) $y = \cos\frac{\theta}{3}, -540^\circ \le \theta \le 540^\circ$
- c) $y = \tan(-x), -360^{\circ} \le x \le 360^{\circ}$

Past Paper Questions

4.

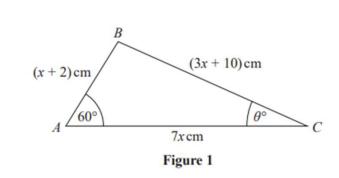


Figure 1 shows a sketch of triangle *ABC* with AB = (x + 2) cm, BC = (3x + 10) cm, AC = 7x cm, angle $BAC = 60^{\circ}$ and angle $ACB = \theta^{\circ}$

(a) (i) Show that $17x^2 - 35x - 48 = 0$

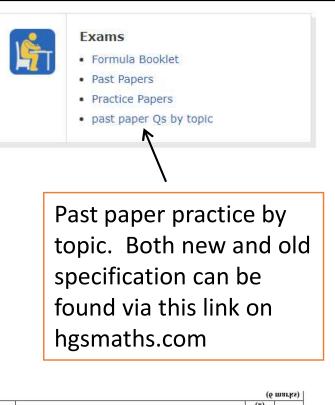
(ii) Hence find the value of x.

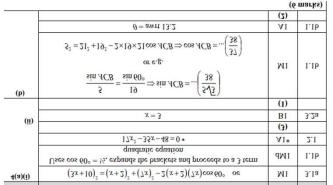
(b) Hence find the value of θ giving your answer to one decimal place.

(2)

(1)

(3)

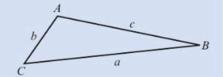




Summary of Key Points

1 This version of the cosine rule is used to find a missing side if you know two sides and the angle between them:

 $a^2 = b^2 + c^2 - 2bc \cos A$



2 This version of the cosine rule is used to find an angle if you know all three sides:

$$\cos A = \frac{b^2 + c^2 - a}{2bc}$$

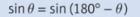
3 This version of the sine rule is used to find the length of a missing side:

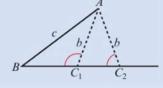
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

4 This version of the sine rule is used to find a missing angle:

 $\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$

5 The sine rule sometimes produces two possible solutions for a missing angle:





6 Area of a triangle = $\frac{1}{2}ab \sin C$.

- 7 The graphs of sine, cosine and tangent are **periodic**. They repeat themselves after a certain interval.
 - The graph of $y = \sin \theta$: repeats every 360° and crosses the *x*-axis at ..., -180°, 0, 180°, 360°, ... has a maximum value of 1 and a minimum value of -1.
 - The graph of $y = \cos \theta$: repeats every 360° and crosses the x-axis at ..., -90°, 90°, 270°, 450°, ... has a maximum value of 1 and a minimum value of -1
 - The graph of y = tan θ: repeats every 180° and crosses the x-axis at ... -180°, 0°, 180°, 360°, ... has no maximum or minimum value has vertical asymptotes at x = -90°, x = 90°, x = 270°, ...