

Pure Mathematics P1 10 Trigonometric Identities and Equations Booklet HGS Maths

Year 12

Name:

Class:

Contents

Prerequisite knowledge

- 10.3 Trigonometric Identities
- 10.4 Simple Trigonometric Equations
- 10.5 Harder Trigonometric Equations

10.6 Equations and Identities

Past Paper Practice Summary

Prerequisite Knowledge

sin/cos/tan of 30°, 45°, 60°

You will frequently encounter angles of 30°, 60°, 45° in geometric problems. Why? We see these angles in equilateral triangles and half squares:

Notes

The Unit Circle and Trigonometry

For values of θ in the range $0 < \theta < 90^{\circ}$, you know that $\sin \theta$ and $\cos \theta$ are lengths on a right-angled triangle:

But how do we get the rest of the graph for *sin, cos* and *tan* when $90^{\circ} \le \theta \le 360^{\circ}$?

The point P on a unit circle, such that OPmakes an angle θ with the positive x-axis, has coordinates ($\cos \theta$, $\sin \theta$). OP has gradient $\tan \theta$.

Angles are always measured **anticlockwise**. (Further Mathematicians will encounter the same when they get to Complex Numbers)

We can consider the coordinate $(\cos \theta, \sin \theta)$ as θ increases from 0 to 360°...

Notes

e.g. $sin(50^{\circ}) = cos(40^{\circ})$

everyone by surprise when it came up in a C3 exam.

Examples

Test Your Understanding

Without a calculator, work out the value of each below.

 $\cos(315^\circ) =$

 $sin(420^\circ) =$

 $tan(-120^{\circ}) =$

 $\tan(-45^\circ) =$

 $sin(135^{\circ}) =$

Notes	

Simplify: $\sin^2 3x + \cos^2 3x$

Prove that $1 - \tan \theta \sin \theta \cos \theta \equiv \cos^2 \theta$

Worked Example		
Prove that $\tan \theta + \frac{1}{\tan \theta} \equiv \frac{1}{\sin \theta \cos \theta}$		

Simplify $5-5\sin^2\theta$

Prove that $\frac{\cos^4\theta - \sin^4\theta}{\cos^2\theta} \equiv 1 - \tan^2\theta$

Worked Example K502a

Given that $\sin \theta = \frac{2}{5}$ and that θ is obtuse, find the exact value of $\cos \theta$

502b: Determine exact values of \sin , \cos and \tan using another known trigonometric ratio, for obtuse or reflex angles.

It is given that B is reflex and that $\sin B = -\frac{1}{2}$

Find the exact value of $\cos B$.

502c: Determine exact values of \sin , \cos and \tan using another known trigonometric ratio in terms of an algebraic expression.

Given that

$$\sin\theta=\frac{k-1}{k+1}$$

where k is a positive constant and heta is acute.

Find an expression for $\cos heta$ in terms of k.

 $\cos heta = \emptyset$

502f: Write an expression given in the form $a\sin^2 x + b\cos^2 x$ in terms of just \sin or \cos

Given that:

 $2\sin^2 3lpha + 8\cos^2 3lpha \equiv A + B\sin^2 3lpha$

where \boldsymbol{A} and \boldsymbol{B} are integers.

Work out the values of ${\boldsymbol{A}}$ and ${\boldsymbol{B}}.$

502i: Simplify a trigonometric expression by using the identity $\sin^2 x + \cos^2 x \equiv 1$ and $\tan x = \frac{\sin x}{\cos x}$

Simplify

 $1-\sin\alpha\cos\alpha\tan\alpha$

giving your answer as a single trigonometric function.

502j: Simplify a trigonometric expression involving $\tan^2 x$ or $\tan^3 x$

Simplify

 $1-\cos^2 heta an^2 heta$

giving your answer as a single trigonometric function.

502k: Simplify an algebraic fraction in terms of \sin and \cos using quadratic factorisation.

Simplify

 $rac{12+3\sin x}{2\cos^2 x-5\sin x+10}$ Giving your answer in the form $rac{a}{b+c\sin x}$

Given that $p = 3\cos\theta$ and $q = 2\sin\theta$, show that $4p^2 + 9q^2 = 36$

10.4 Simple Trigonometric Equations

Notes	

503a: Solve a trigonometric equation given in the form $\sin x = k$ where x is in degrees.

Solve $\sin x = -0.8$ in the interval $0^\circ \leq x \leq 720^\circ$

Give your solution(s) correct to 1 decimal place where appropriate.

503f: Solve trigonometric equations given in the form $\sin^2 x = a$ where x is in degrees.

Solve $\sin^2 x = 0.49$ in the interval $0^\circ \leq x \leq 360^\circ$

Give your solution(s) correct to 1 decimal place where appropriate.

10.5 Harder Trigonometric Equations

Notes	

503b: Solve a trigonometric equation given in the form $\sin(ax) = k$ where x is in degrees.

Solve
$$an\left(rac{1}{2}x
ight)=0.4$$
 in the interval $-180^\circ\leq x\leq 540^\circ$

Give your solution(s) correct to 1 decimal place where appropriate.

503c: State the number of solutions to a trigonometric equation given in the form sin(ax) = k or cos(ax) = k or tan(ax) = k for a given range.

Determine the number of solutions of the equation $\cos{(2x)} = -0.8$ in the interval $-360^\circ \le x \le 315^\circ$

 \oslash Number of solutions =

503d: Solve a trigonometric equation given in the form sin(ax + b) = k where x is in degrees and k is positive.

Solve $\sin\left(rac{1}{3} heta-150
ight)=0.9$ in the interval $-180^\circ\leq heta\leq900^\circ$

Give your solution(s) correct to 1 decimal place where appropriate.

503e: Solve a trigonometric equation given in the form sin(ax + b) = k where x is in degrees and k is negative.

Solve $\sin{(2x+90)}=-0.4$ in the interval $0^\circ \leq x \leq 360^\circ$

Give your solution(s) correct to 1 decimal place where appropriate.

503i: Solve a trigonometric equation given in the form $p\sin(ax+b) = q\cos(ax+b)$

Solve $4\sin(rac{1}{2} heta+60)=\sqrt{3}\cos(rac{1}{2} heta+60)$ in the interval $0^\circ< heta<720^\circ$

Give your solutions correct to 2 decimal places where appropriate.

503n: Solve a trigonometric equation from a modelled scenario.

The depth of water, ${\boldsymbol{H}}$ meters, in a harbour on a particular day is modelled by the formula

 $H = 10 + 2\sin\left(rac{1}{2} heta
ight), \qquad 0 \leq \ heta \leq 1440$

where heta is the number of minutes after midnight.

Freddie needs to leave the harbour by 1 pm at the latest. Find the last time the water is at a depth of the water is **11.96** meters before Freddie needs to leave. Give your answer to the nearest minute in 24 hour clock.

10.6 Equations and Identities

Solve in the interval $0 \le x < 360^{\circ}$: $5 \sin^2 x + 3 \sin x - 2 = 0$

503j: Solve a quadratic equation involving a single trigonometric function.

Solve $2\cos^2 x = 15\cos x - 7$ in the interval $0^\circ < x < 360^\circ$

Give your solution(s) correct to 2 decimal places where appropriate.

503k: Solve a trigonometric equation involving a mixture of \sin and \cos where one is squared.

Solve $2\cos^2 heta=3(-3\sin heta+2)$ in the interval $0^\circ\leq heta<360^\circ$

Give your solution(s) correct to 2 decimal places where appropriate.

Solve in the interval $0 \le x \le 360^{\circ}$: $\sin^2(x-30^\circ) = \frac{1}{2}$

Past Paper Questions

12. (a) Solve, for $-180^{\circ} \le x < 180^{\circ}$, the equation

 $3\sin^2 x + \sin x + 8 = 9\cos^2 x$

giving your answers to 2 decimal places.

(6)

(b) Hence find the smallest positive solution of the equation

 $3\sin^2(2\theta - 30^\circ) + \sin(2\theta - 30^\circ) + 8 = 9\cos^2(2\theta - 30^\circ)$

giving your answer to 2 decimal places.

(2)

Attempts $2\theta - 30^{\circ} = -19.47^{\circ}$

 $\Rightarrow \theta = 5.26^{\circ}$

(d)

(0)

MI

Alft

(2) (8 mark:

3.1

1.1

Summary of Key Points

- **5** For all values of θ , $\sin^2 \theta + \cos^2 \theta \equiv 1$
- **6** For all values of θ such that $\cos \theta \neq 0$, $\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$
- 7 Solutions to sin $\theta = k$ and cos $\theta = k$ only exist when $-1 \le k \le 1$
 - Solutions to $\tan \theta = p$ exist for all values of p.
- 8 When you use the inverse trigonometric functions on your calculator, the angle you get is called the principal value.
- **9** Your calculator will give principal values in the following ranges:
 - cos⁻¹ in the range 0 $\leq \theta \leq$ 180°
 - \sin^{-1} in the range $-90^{\circ} \le \theta \le 90^{\circ}$
 - tan⁻¹ in the range $-90^{\circ} \le \theta \le 90^{\circ}$