

Year 12 Pure Mathematics P1 5 Straight Line graphs Booklet

Dr Frost Course

HGS Maths

Name:

Class:

Contents

5.2) Equations of straight lines

5.3) Parallel and perpendicular lines

5.4) Length and area

5.5) Modelling with straight lines

Past Paper Practice Summary

Prior knowledge check

5.2) Equations of straight lines

notes

Just for your interest...

	Worked Example
Gradient:	2x + 3y = 6
y-intercept:	
<i>x</i> -intercept:	
Sketch:	

	Fill in the blank	
Line	<i>x</i> -intercept	<i>y</i> -intercept
y = 2x + 3		
y = 3x + 2		
y = 3x - 2		
y = 2x - 3		
y = 3 - 2x		
y = 2 - 3x		
2x + 3y = 6		
3x + 2y = 6		
y = ax + b		

495a: Determine an equation of a straight line given the gradient and one point using $y - y_1 = m(x - x_1)$

Find an equation of the line with gradient $\frac{1}{4}$ and that passes

through the point $\left(-rac{9}{2},10
ight)$.

495c: Determine an equation of a straight line, in the form ax + by = c, given two points using $y - y_1 = m(x - x_1)$

Determine an equation of the line that passes through the points (4,3) and $(5,\frac{11}{3})$.

Write your answer in the form ax + by = c, where a, b and c are **integers**.

The lines y = 2x - 7 and 3x + 2y - 21 = 0 intersect at the point A.

The point *B* has coordinates (2, -8).

Find the equation of the line that passes through the points *A* and *B*.

Write your answer in the form ax + by + c = 0, where *a*, *b* and *c* are integers.

5.3) Parallel and perpendicular lines

notes

Determine whether the pairs of lines are parallel, perpendicular or neither: 5x - 2y - 3 = 0 $y = \frac{5}{2}x$ 5x + 3y - 21 = 03x - 5y + 2 = 0

495b: Determine an equation of a straight line, in the form ax + by = c, parallel to another using $y - y_1 = m(x - x_1)$

The line l_1 has the equation 6x - 10y + 55 = 0. The line l_2 is parallel to l_1 and passes through the point $A\left(\frac{21}{2}, -5\right)$ as shown in the diagram below.

Determine the equation of l_2 . Give your answer in the form ax + by = c, where a, b and c are **integers**.

495d: Find an equation of a straight line, in the form ax + by = c, perpendicular to another using $y - y_1 = m(x - x_1)$

The line l_1 has the equation 8x - 10y - 25 = 0.

The line l_2 is perpendicular to l_1 and passes through the point $A\left(4,\frac{19}{2}\right)$ as shown in the diagram below.

Find the equation of l_2 . Give your answer in the form ax + by = c, where a, b and c are **integers**.

495e: Determine the perpendicular bisector of a line using $y - y_1 = m(x - x_1)$

A straight line passes through the points R(4,5) and S(-6,1).

Find the equation of the perpendicular bisector of RS.

Give your answer in the form ax + by + c = 0, where a, b and c are **integers**.

Simplify your answer where possible.

The points A, B and C have coordinates (0, 12), (-3, 0) and (0, c) respectively. The line through points A and B is perpendicular to the line through points B and C. Find the value of c

Determine the coordinates of *A*

5.4) Length and area	

notes

289a: Use Pythagoras' theorem to find the distance between two points.

The points (-4,3) and (4,6) are plotted on the coordinate grid.

Find the distance between the two points. Give your answer correct to 1 decimal place.

289b: Use Pythagoras' theorem to determine the perimeter of a rectangle given the coordinates of its vertices.

The line segment that connects $P\left(0,-5
ight)$ and $Q\left(-5,7
ight)$ is drawn on the coordinate grid.

Determine the length PQ. Give your answer correct to 1 decimal place.

495f: Determine the area of a triangle enclosed by an axis and two intersecting lines.

The line l_1 has equation y=3xThe line l_2 has equation 2y+3x=8

The lines l_1 and l_2 intersect at A. The line l_2 intersects the x-axis at B.

Find the exact area of triangle OAB.

495g: Determine the area of a quadrilateral enclosed by both axes and two intersecting lines.

The line l_1 has equation y=4x+5The line l_2 has equation y=-7x+27

The line l_1 passes through Q and intersects the y-axis at P. The line l_2 passes through Q and intersects the x-axis at R

Find the exact area of the quadrilateral OPQR.

495i: Determine the area of a triangle given by 3 coordinates, given the equation of a line between two of them.

The line l_1 passes through the points P(-9, -6) and Q(-6, -3). The line l_2 passes through the point R(-12, -1) and is perpendicular to l_1 . The lines l_1 and l_2 intersect at the point S.

By first using the equations of l_1 and l_2 to find the coordinates of S, work out the area of the triangle PQR.

5.5) Modelling with straight lines

notes

495h: Determine the equation of a line for a given context using $y - y_1 = m(x - x_1)$

The distance that a car can travel in a journey starting with a full tank of fuel was investigated.

From a full tank of fuel, 105.8 litres of fuel were consummed after the car had travelled 80 km From a full tank of fuel, 304.6 litres of fuel were consummed after the car had travelled 360 km

Using a linear model, with V litres being the volume of fuel consummed and d km being the distance the car had travelled, find an equation linking V with d.

The A Level Maths mark, y %, and GCSE Maths mark, x %, is recorded for several students. Assume the line goes through (0, 40) and (60, 80).

- a) Write a linear model
- b) Interpret the gradient and *y*-intercept in this context
- c) Predict the A Level Maths mark of a student who got 100% for their GCSE Maths mark

In 2010 the population of rabbits in an area was 200. Locals projected that the number of rabbits would increase by 4 per year.

- a) Write a linear model for the population, p, of rabbits t years after 2010
- b) Write down a reason why this might not be a realistic model.

Extract from Formulae book

Past Paper Questions

Figure 1 shows a rectangle ABCD.

The point A lies on the y-axis and the points B and D lie on the x-axis as shown in Figure 1.

Given that the straight line through the points A and B has equation 5y + 2x = 10

(a) show that the straight line through the points A and D has equation 2y - 5x = 4

(b) find the area of the rectangle ABCD.

(3)

(4)

		(7 marks)	
		(3)	
	area <i>ABCD</i> = 11.6	AI	1.1b
	Uses area $ABCD = AD \times AB = \sqrt{29} \times \sqrt{\frac{116}{25}}$	МІ	1.1b
(p)	Uses Pythagoras' theorem to find AB or AD Either $\sqrt{5^2 + 2^2}$ or $\sqrt{\left(\frac{4}{5}\right)^2 + 2^2}$	МІ	3.1a
		(4)	
	$\Rightarrow 2y-5x=4$ *	A1*	1.1b
	Uses perpendicular gradients $y = +\frac{5}{2}x + c$	MI	2.2a
У	y coordinate of A is 2	BI	2.1
8 (a)	Gradient $AB = -\frac{2}{5}$	BI	2.1

Summary of Key Points

y = mx + c

Summary of key points

 The gradient *m* of the line joining the point with coordinates (x₁, y₁) to the point with coordinates (x₂, y₂) can be calculated using the formula

 $m = \frac{y_2 - y_1}{x_2 - x_1}$

0

2 • The equation of a straight line can be written in the form

y = mx + c,

where m is the gradient and (0, c) is the y-intercept.

 The equation of a straight line can also be written in the form

ax + by + c = 0,

where a, b and c are integers.

- 3 The equation of a line with gradient m that passes through the point with coordinates (x₁, y₁) can be written as y y₁ = m(x x₁).
- 4 Parallel lines have the same gradient.
- 5 If a line has a gradient m, a line perpendicular to it has a gradient of -¹/_m
- 6 If two lines are perpendicular, the product of their gradients is -1.
- 7 You can find the distance *d* between (x_1, y_1) and (x_2, y_2) by using the formula $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$

- 8 The point of intersection of two lines can be found using simultaneous equations.
- 9 Two quantities are in direct proportion when they increase at the same rate. The graph of these quantities is a straight line through the origin.
- 10 A mathematical model is an attempt to represent a real-life situation using mathematical concepts. It is often necessary to make assumptions about the real-life problems in order to create a model.