

Year 12 Pure Mathematics 13 Integration

Name:

Class:

Contents

- 13.1) Integrating x^n
- 13.2) Indefinite integrals
- 13.3) Finding functions
- 13.4) Definite integrals
- 13.5) Areas under curves
- 13.6) Areas under the *x*-axis
- 13.7) Areas between curves and lines

Extract from Formulae booklet Past Paper Practice Summary

Prior knowledge check

13.1) Integrating x ⁿ	

Notes

Find y, given that
$$\frac{dy}{dx} = a$$
) $3x^2$ b) $-2x^3$ c) $5x^4$

Find f(x), given that f'(x) =a) \sqrt{x} b) $\sqrt[3]{x}$ c) $\sqrt[4]{x}$

Find y, given that
$$\frac{dy}{dx} =$$

a) $\frac{2}{3}\sqrt{x}$
b) $\frac{4}{7}\sqrt[3]{x}$
c) $\frac{5}{6}\sqrt[4]{x}$
d) $\frac{2}{3\sqrt{x}}$
e) $\frac{4}{7\sqrt[3]{x}}$
f) $\frac{5}{6\sqrt[4]{x}}$

Find *y*, given that
$$\frac{dy}{dx} =$$

a) $\sqrt{36x^7}$
b) $\sqrt{25x^7}$
c) $2x^{-\frac{7}{10}}$
d) $39x^{\frac{5}{8}}$
e) $(3x - 2)^2$

13.2) Indefinite integrals	

Notes

521a: Integrate a collection of terms in the form ax^b

Find $\int \left(x^7 + rac{3}{5}x^4 + x + 4x^{-7}
ight)dx$ $I = \oslash \fbox{+c}$ 521b: Integrate a collection of terms in the form ax^b requiring rewriting of roots and reciprocals.

Find $\int \left(-3\sqrt[3]{x}+rac{4}{x^3}
ight)dx$

521d: Integrate an expression written as a fraction with a single term on the denominator.

Find

$$\int \left(\frac{5x^{\frac{1}{2}} - 3x^7}{4x}\right) dx$$

521c: Integrate an expression requiring bracket expansion.

Find $\int \left(3x^4+x^2
ight)\left(2x^5+4x
ight)dx$

$$\int \left(\frac{p}{2x^2} + pq\right) \, dx = \frac{2}{x} + 12 + c$$

Find the value of p and the value of q

13.3) Finding functions	

Notes

522a: Determine a function by integrating $\frac{dy}{dx}$

Find the equation of the curve given that $\frac{dy}{dx} = 5x^3 + 9x^2 + 5x$ and that the curve passes through the point (3, 231)

13.4) Definite integrals	

Notes

524a: Evaluate a definite integral where the integrand is a collection of terms in the form ax^b

Evaluate

$$\int_1^5 \big(-x^3+6x^2+4x\big)dx$$

Given that *P* is a constant and

$$\int_{3}^{7} (4Px + 7) \, dx = 108P^2$$

find the possible values of P

Given that
$$\int_{1}^{k} \frac{1}{\sqrt[4]{x}} dx = \frac{28}{3}$$
, calculate the value of k

(

13.5) Areas under curves	

Notes

524e: Determine the shaded area enclosed between a curve and the x-axis where the limits are roots.

The diagram below shows the graph of

 $f(x) = -x^2 + 14x - 45.$

Find the exact area of the shaded region.

Find the area of the finite region bounded by the curve with equation $y = x^2(x+2)$ and the *x*-axis

13.6) Areas under the <i>x</i> -axis	

Notes

Find the area of the finite region bounded by the curve with equation y = x(x - 5)and the *x*-axis

Find the total area bound between the curve y = x(x - 2)(x - 4) and the *x*-axis.

Find the total area bound between the curve $y = x^3 + 2x^2 - 15x$ and the *x*-axis.

13.7) Areas between curves and lines

Notes	

Determine the area bounded by the curve with equation y = x(7 - x) and the line with equation y = 2x

The diagram shows a sketch of the curve with equation y = x(x - 5) and the line with equation y = 3x. Find the area of the shaded region *OAC*.

Determine the area bounded by the curve with equation $y = 5x - x^2 - 3$ and the line with equation y = 5 - x

Past Paper Questions

Summary of Key Points

Summary of key points

- 1 If $\frac{dy}{dx} = x^n$, then $y = \frac{1}{n+1}x^{n+1} + c$, $n \neq -1$. Using function notation, if $f'(x) = x^n$, then $f(x) = \frac{1}{n+1}x^{n+1} + c$, $n \neq -1$.
- 2 If $\frac{dy}{dx} = kx^n$, then $y = \frac{k}{n+1}x^{n+1} + c$, $n \neq -1$. Using function notation, if $f'(x) = kx^n$, then $f(x) = \frac{k}{n+1}x^{n+1} + c$, $n \neq -1$.

When integrating polynomials, apply the rule of integration separately to each term.

- $\mathbf{3} \quad \int \mathsf{f}'(x) \mathsf{d}x = \mathsf{f}(x) + c$
- 4 $\int (f(x) + g(x))dx = \int f(x)dx + \int g(x)dx$
- **5** To find the constant of integration, *c*
 - Integrate the function
 - Substitute the values (x, y) of a point on the curve, or the value of the function at a given
 point f(x) = k into the integrated function
 - + Solve the equation to find \boldsymbol{c}
- **6** If f'(x) is the derivative of f(x) for all values of x in the interval [a, b], then the definite integral is defined as $\int_{a}^{b} f'(x) dx = [f(x)]_{a}^{b} = f(b) f(a)$
- 7 The area between a positive curve, the *x*-axis and the lines x = a and x = b is given by Area = $\int_{a}^{b} y \, dx$

where y = f(x) is the equation of the curve.

- 8 When the area bounded by a curve and the x-axis is below the x-axis, $\int y \, dx$ gives a negative answer.
- **9** You can use definite integration together with areas of trapeziums and triangles to find more complicated areas on graphs.