

Year 12 Pure Mathematics P1 4 Graphs and Transformations Booklet

Dr Frost Course

HGS Maths

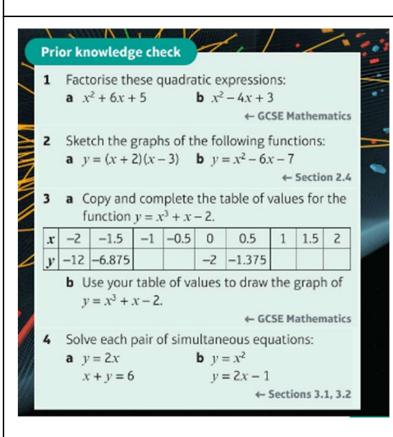
Name:

Class:

Contents		
4.1) Cubic graphs		
4.2) Quartic graphs		
4.3) Reciprocal graphs		
4.4) Points of intersection		
4.5) Translating graphs		
4.6) Stretching graphs		
4.7) Transforming functions		

Past Paper Practice Summary

Prior knowledge check



4.1) Cubic graphs		

Polynomial Graphs

In Chapter 2 we briefly saw that a **polynomial** expression is of the form:

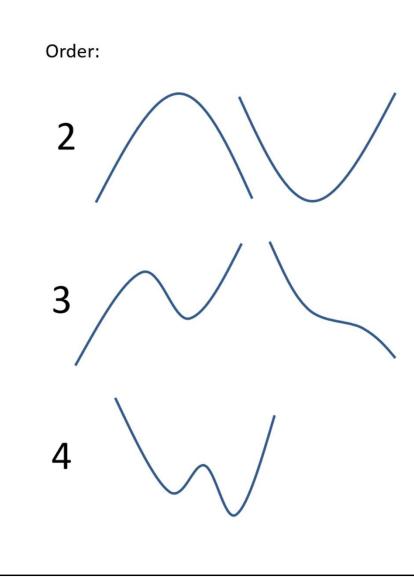
 $a + bx + cx^2 + dx^3 + ex^3 + \cdots$

where a, b, c, d, e, ... are constants (which could be 0).

The **order** of a polynomial is its highest power.

Order	Name	These are covered in / Chapter 5.
0	Constant (e.g. "4")	
1	Linear (e.g. " $2x - 1$ ")	Chapter 2 explored the graphs for these.
2	Quadratic (e.g. " $x^2 + 3$ ")	
3	Cubic	We will cover
4	Quartic	these now.
5	Quintic	*
		While these are technically beyond the A Level syllabus, we will look at how to sketch polynomials in general.

Polynomial Graphs shapes



What property connects the order of the polynomial and the shape? The number of 'turns' is one less than the order, e.g. a cubic has 2 'turns', a quartic 3 'turns'. Bro Note: ...Actually this is not strictly true,

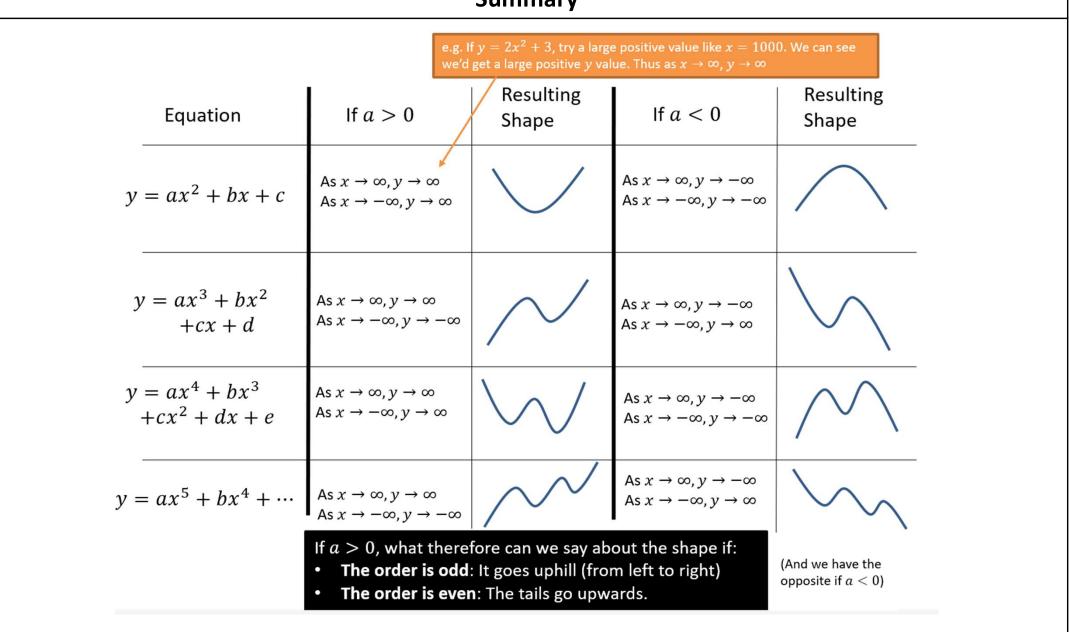
e.g. consider $y = x^4$, which has a U shape. But this is because multiple turns are being squashed into a single point.

In Chapter 2 how did we tell what way up a quadratic is, and why does this work?

For a quadratic $y = ax^2 + bx + c$, i.f. a > 0, we had a 'valley' shape. This is because if x was a large positive value, ax^2 would be large and positive, thus the graph's y value tends towards infinity.

We would write: "As $x \to \infty$, $y \to \infty$ " where " \to " means "tends towards".

Summary

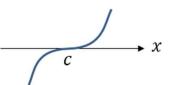


Important notes

If we sketched $y = (x - a)(x - b)^2(x - c)^3$ what happens on the *x*-axis at:

x = a: The line **crosses** the axis.

x = b: The line **touches** the axis.



→ x

 $a \rightarrow x$

Notes	

Sketch the graph of: y = (x + 1)(x + 2)(x + 3)

$$y = (x + 1)(x - 2)(x + 3)$$

Sketch the graph of: y = (x + 1)(x - 2)(3 - x)

$$y = (x - 1)(x - 2)(3 - x)$$

Worked Example Sketch the graph of: Sketch the graph of: $y = (x+2)^2(x-2)$ y = x(x+3)(x+4)

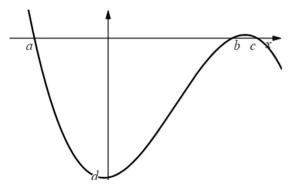
Sketch the graph of: $y = x^3 - 4x^2 - 5x$ Sketch the graph of: $y = (x + 4)^3$

Worked Example				
Sketch the graph of: $y = -(x + 4)^3$	Sketch the graph of: $y = (4 - x)^3$			

T.62 4A: Qs 1-4, P.26 4.1 Qs 1-3

494b: Identify the intercepts of a cubic with the coordinate axes, where the equation is factorised.

The graph of y=(x-5)(6-x)(x+3) is sketched below.



 $a,\,b,\,c$ and d are the intercepts between the curve and the axes.

Find the values of a, b, c and d.

A curve is a positive cubic, touches the x-axis at 3 and crosses the x-axis at -2. Write a possible equation for the curve.

4.2) Quartic graphs		

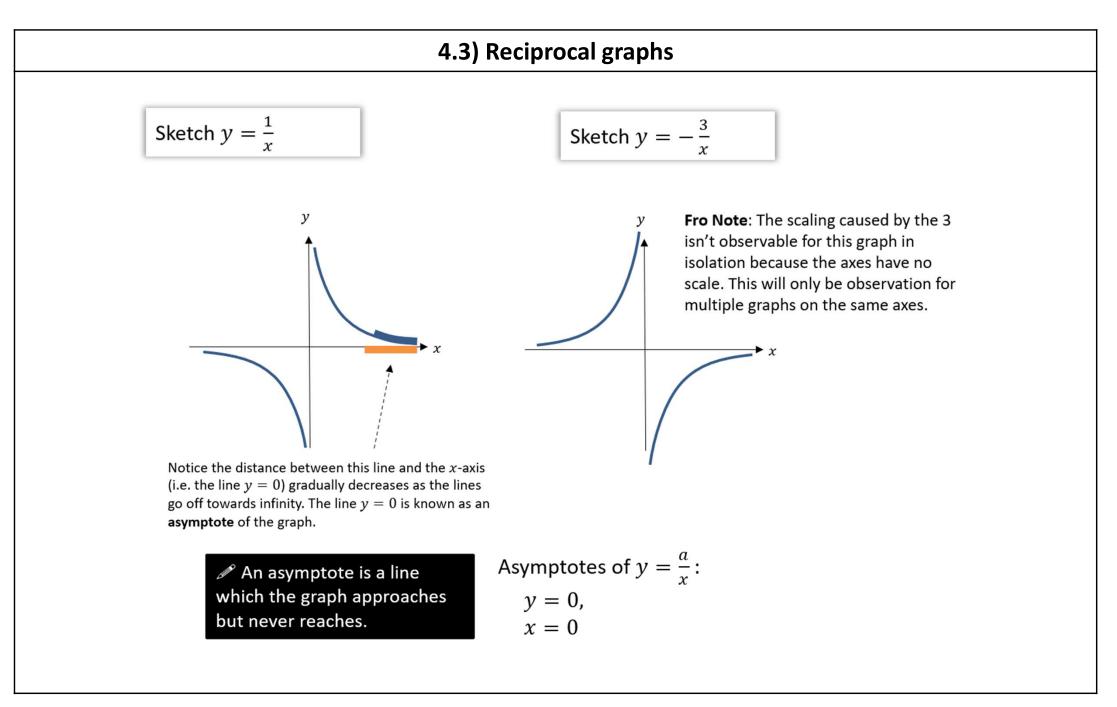
Notes	

Sketch the graph of: Sketch the graph of: $y = x(x-3)^2(2-x)$ y = (x+3)(x+4)(x-3)(x-4)

Sketch the graph of: $y = (x + 2)^2(x - 4)^2$ Sketch the graph of: y = x(x - 4)(x + 5)(x + 6)

Sketch the graph of: Sketch the graph of: $y = (x+4)^2(x-5)(6-x)$ $y = (x - 2)(x + 2)^3$

Worked Example Sketch the graph of: Sketch the graph of: $y = (x+3)^4$ $y = -(x - 4)(x + 2)^3$



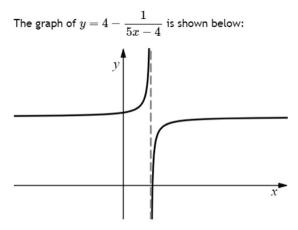
T.67 4C: all Qs, P.28 4.3: all Qs

Notes

493a: Identify the x and y intercepts of a more general reciprocal function.

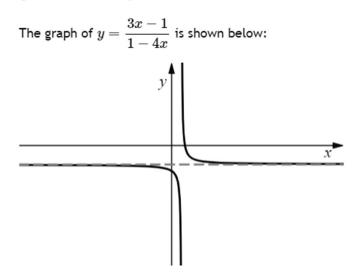
Determine the coordinates of the point where the curve with equation $y=2-\frac{5}{2x+3}$ crosses the y-axis.

493b: Identify the equation of the vertical asymptote of a more general reciprocal function.



Find the equation of the vertical asymptote.

493c: Identify the equation of the horizontal asymptote of a more general reciprocal function.



Find the equation of the horizontal asymptote.

493g: Determine coefficients in a mogeneral reciprocal function that lead to a given x or y intercept.

A curve has equation

$$y = rac{ax-b}{cx+d} \qquad x
eq -rac{d}{c}$$

where $a, b \; \mathrm{and} \; d$ are positive prime numbers and c is a positive integer.

The curve crosses the x-axis at the point $\left(\frac{5}{7},0\right)$

Find the values of a and b.

493h: Determine coefficients in a more general reciprocal function that lead to a given vertical or horizontal asymptote.

A curve has equation

$$y=rac{ax+b}{c-dx}\qquad x
eqrac{c}{d}$$

where a, c and d are positive prime numbers and b is a positive integer.

An asymptote to the curve has equation $y=-rac{5}{2}$

Find the values of a and d.

4.4) Points of intersection		

	Note	S	

On the same diagram sketch the curves with equations $y = -x^2(5x - a)$ and $y = -\frac{b}{x}$, where a, b are positive constants.

State, giving a reason, the number of real solutions to the equation $x^2(5x - a) + \frac{b}{x} = 0$

On the same diagram sketch the curves with equations $y = \frac{3}{x^2}$ and $y = x^2(x - 4)$. State, giving a reason, the number of real solutions to the equation $x^4(x - 4) - 3 = 0$

On the same diagram sketch the curves with equations y = x(x - 5) and $y = x(x - 3)^2$, and hence find the coordinates of any points of intersection.

Worked Example		
Work out the range of values of a such that the graphs of $y = x^2 + a$ and $3y = x - 2$ have two points of intersection		

4.5) Translating graphs

This is all you need to remember when considering how transforming your function transforms your graph...

	Affects which axis?	What we expect or opposite?
Change inside $f()$	x	Opposite
Change outside $f()$	У	Direct

Therefore...

$$y = f(x - 3) \implies \text{Translation by} \begin{pmatrix} 3 \\ 0 \end{pmatrix}$$
$$y = f(x) + 4 \implies \text{Translation by} \begin{pmatrix} 0 \\ 4 \end{pmatrix}$$

Effect of transformation on specific points

y = f(x)	(4,3)	(1, 0)	(6, -4)
y = f(x+1)	(3,3)	(0,0)	(5, -4)
y = f(x) - 1	(4,2)	(1,-1)	(6, -5)

T.74 4E: Qs 1,2, P.30 4.5: Qs 1,2

	Notes	

448h: Determine the new equation of a function after a translation by $\begin{pmatrix} a \\ 0 \end{pmatrix}$

or $\begin{pmatrix} 0 \\ a \end{pmatrix}$

The curve $y=x^2-x-5$ is translated by $inom{0}{-1}.$

State the equation of the new curve after this transformation.

The point with coordinates (-1.5, 0) lies on the curve with equation $y = (x + a)^3 + 6(x + a)^2 + 9(x + a)$

where a is a constant. Find the two possible values of a

Sketch y = x(x - 3). On the same axes, sketch y = (x + a)(x + a - 3), where a > 3.

4.6) Stretching graphs

This is all you need to remember when considering how transforming your function transforms your graph...

	Affects which axis?	What we expect or opposite?
Change inside $f()$	x	Opposite
Change outside $f()$	У	Direct

Therefore...

y = f(5x)	$ \rightarrow $	Stretch in x-direction by scale factor $\frac{1}{5}$
y = 2f(x)	$ \longrightarrow $	Stretch in y-direction by scale factor 2

$\mathbf{y} = f(\mathbf{x})$	(4,3)	(1, 0)	(6, -4)
y = f(2x)	(2,3)	(0.5,0)	(3, -4)
y = 3f(x)	(4,9)	(1,0)	(6, -12)
y = f(-x)	(-4,3)	(-1,0)	(-6, -4)
y = -f(x)	(4, -3)	(1,0)	(6,4)

Notes	

	Notes	

Sketch $y = x^2(x + 8)$. On the same axes, sketch the graph If y = (x + 2)(x) with equation the same axes.

 $y = (4x)^2(4x + 8)$

If y = (x + 2)(x - 1), sketch y = f(x) and $y = f(\frac{x}{4})$ on the same axes.

On the same axes, sketch:

$$y = x(x+2)(x-1)$$
 $y = 4x(4x+2)(4x-1)$ $y = -x(x+2)(x-1)$

450e: Understand the effect on a point under the transformation y = af(x)

The curve with equation y = f(x) has the maximum point P(8, -14).

Find the image of P on the curve with equation $y=rac{1}{2}f\left(x
ight)$

450f: Understand the effect on a point under the transformation y=f(ax)

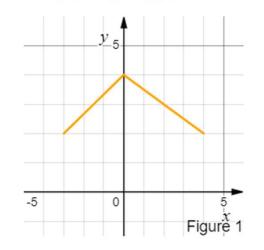
The point $P\left(6,-3
ight)$ lies on the curve with equation $y=f\left(x
ight).$

Find the image of P on the curve with equation y = f(3x)

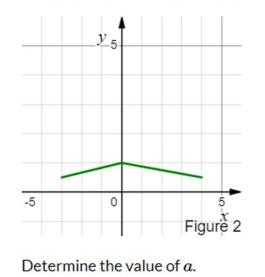
Worked Example KS 450i

Page 69

The graph of y=f(x) is shown in Figure 1.



The graph of y = af(x) is shown in Figure 2.



4.7) Transforming functions			

	Notes	

Find the new coordinates under the transformations

y = f(x)	(-6,4)	(0,1)
y = f(x+2)		
y = f(x) - 2		
y = f(3x)		
y = 4f(x)		
$y = f\left(\frac{x}{5}\right)$		
y = 6f(x)		
y = -f(x)		
y = f(-x)		

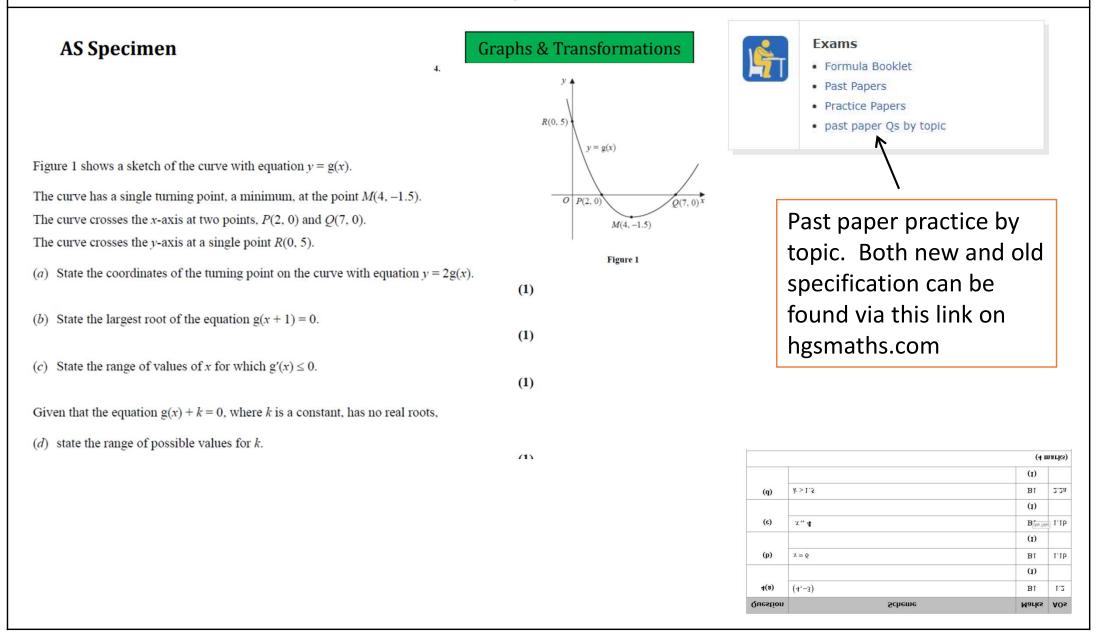
The point A(2, 5) is the minimum of the curve with equation y = f(x). Write the new coordinates of the new minimum of the curve:

- *a*) y = 2f(x) + 3
- $b) \quad y = 3f(x) 2$
- *c*) y = f(2x) + 3
- *d)* y = f(3x) 2
- *e)* y = -f(x) + 3
- $f) \quad y = -f(x) 2$
- $g) \quad y = f(-x) + 3$
- $h) \quad y = f(-x) 2$

The point A(2, 5) is the minimum of the curve with equation y = f(x). Write the new coordinates of the new minimum of the curve:

- a) y = -2f(x) + 3b) y = -3f(x) - 2c) y = 2f(-x) + 3d) y = 3f(-x) - 2e) y = -2f(-x) + 3f) y = -3f(-x) - 2g) y = 3f(2x) + 7h) y = 7f(5x) - 2i) y = -3f(2x) + 7j) y = -7f(5x) - 2
- *k)* y = -3f(-2x) + 7
- *l)* y = -7f(-5x) 2

Past Paper Questions



Summary of key points

- 1 If p is a root of the function f(x), then the graph of y = f(x) touches or crosses the x-axis at the point (p, 0).
- **2** The graphs of $y = \frac{k}{x}$ and $y = \frac{k}{x^2}$, where k is a real constant, have asymptotes at x = 0 and y = 0.
- 3 The x-coordinate(s) at the points of intersection of the curves with equations y = f(x) and y = g(x) are the solution(s) to the equation f(x) = g(x).
- **4** The graph of y = f(x) + a is a translation of the graph y = f(x) by the vector $\begin{pmatrix} 0 \\ a \end{pmatrix}$.
- **5** The graph of y = f(x + a) is a translation of the graph y = f(x) by the vector $\begin{pmatrix} -a \\ 0 \end{pmatrix}$.
- 6 When you translate a function, any asymptotes are also translated.
- 7 The graph of y = af(x) is a stretch of the graph y = f(x) by a scale factor of a in the vertical direction.
- 8 The graph of y = f(ax) is a stretch of the graph y = f(x) by a scale factor of $\frac{1}{a}$ in the horizontal direction.
- **9** The graph of y = -f(x) is a reflection of the graph of y = f(x) in the x-axis.
- **10** The graph of y = f(-x) is a reflection of the graph of y = f(x) in the y-axis.