

Pure Mathematics P1 14 Exponentials and Logarithms – Part 1 **Booklet HGS Maths**

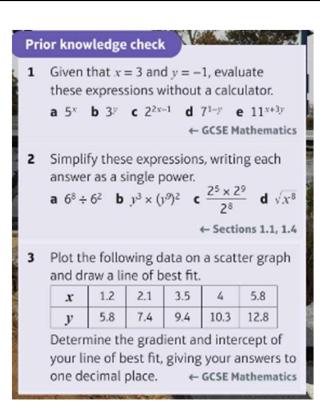
Year 12

Dr Frost Course

Name:

Class:

Contents


14.4 Logarithms

14.5 Laws of Logarithms

14.6 Solving Equations using Logarithms

Extract from Formulae booklet Past Paper Practice Summary

Prior knowledge check

14.4 Logarithms				

Notes		

Worked Example (DFM 527b)

Write each statement as a logarithm.

- a) $3^2 = 9$
- b) $2^7 = 128$
- c) $64^{\frac{1}{2}} = 8$

Rewrite each statement using a power.

- a)
- $\log_3 81 = 4$ $\log_2 \left(\frac{1}{8}\right) = -3$ b)

Without using a calculator, find the value of:

- $\log_3 81$ a)
- $\log_4 0.25$ b)
- c)
- $\log_{0.5} 4$ $\log_a(a^5)$ d)

Without using a calculator, find the value of:

- log₅ 5 ln e² a)
- b)
- log 1000 c)

Use your calculator to find the following logarithms to 3 decimal places.

- a) $\log_3 40$
- b) ln 8
- c) log 75

14.5 Laws of Logarithms

Notes		

Worked Example (DFM 527f)

Write as a single logarithm.

- a) $\log_3 6 + \log_3 7$
- b) $\log_2 15 \log_2 3$
- c) $2\log_5 3 + 3\log_5 2$
- d) $\log_{10} 3 4 \log_{10} \left(\frac{1}{2}\right)$

Write in terms of $\log_a x$, $\log_a y$ and $\log_a z$.

- a) $\log_a(x^2yz^3)$
- b) $\log_a\left(\frac{x}{y^3}\right)$
- c) $\log_a\left(\frac{x\sqrt{y}}{z}\right)$
- d) $\log_a\left(\frac{x}{a^4}\right)$

527c: Solve logarithmic equations given in the form $\log_a x = b$

Find the exact solution of

 $2\log_4{(9y+8)}+3=9$

 $y = \emptyset$

Solve the equation $\log_{10} 4 + 2 \log_{10} x = 2$.

Solve the equation $\log_3(x + 11) - \log_3(x - 5) = 2$

527h: Solve logarithmic equations given in the form $\log[{
m f}(x)] = \log[{
m g}(x)]$

Find the exact solution of

 $\log_2{(3y-1)} = \log_2{(y+5)} - \log_2{(2y-5)}$

527i: Solve equations using logarithm product and quotient laws (excluding power law).

Solve

 $\log_4(x+3) + \log_4(2x+20) = 2$

527j: Solve logarithmic equations by using the power law.

Solve

 $2\log_2(x+7) - \log_2(14x+134) = -1$

527g: Use laws of logs to write a logarithm as an expression by substitution.

Given that $x = \log 2$ and $y = \log 5$, write

 $\log 20$

in terms of x and y.

14.6 Solving Equations using Logarithms

Notes	

Solve the following equations, giving your answers to 3 decimal places.

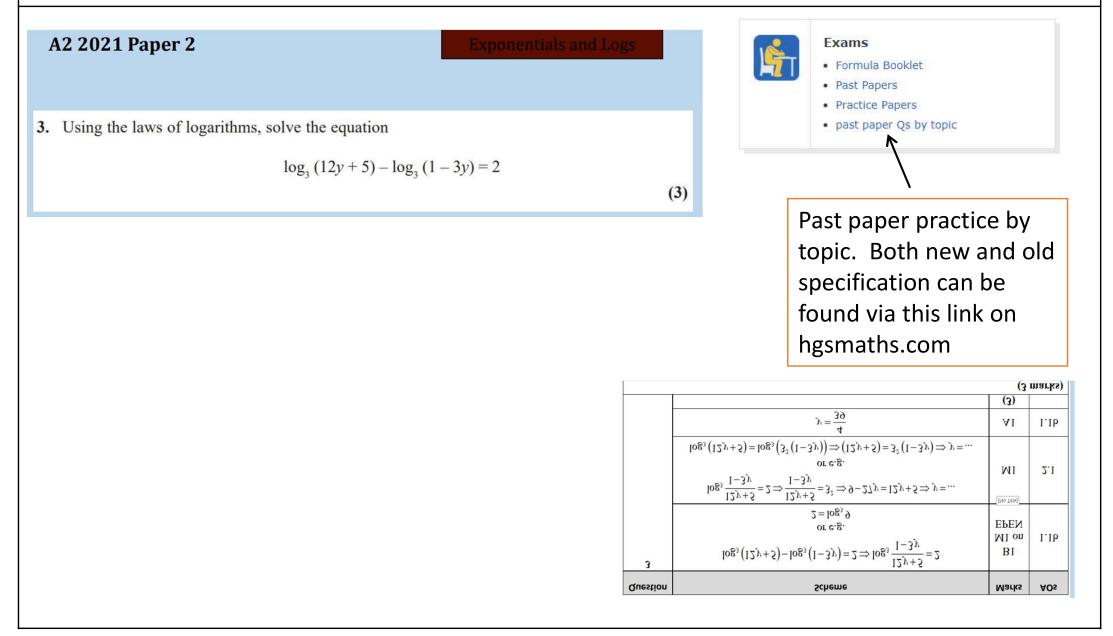
- a) $3^x = 20$
- b) $5^{4x-1} = 61$

Solve the equation $5^{2x} - 12(5^x) + 20 = 0$, giving your answer to 3 significant figures.

Find the solution to the equation $3^x = 2^{x+1}$, giving your answer to four decimal places.

Solve the equation $3^{x+1} = 4^{x-1}$. Round your answer to 3 decimal places.

Solve the equation $2^x 3^{x+1} = 5$. Give your answer in exact form.


Extract from Formulae book

Logarithms and exponentials

$$\log_a x = \frac{\log_b x}{\log_b a}$$

$$e^{x \ln a} = a^x$$

Past Paper Questions

- **3** $\log_a n = x$ is equivalent to $a^x = n$ $(a \neq 1)$
- 4 The laws of logarithms:
 - $\log_a x + \log_a y = \log_a xy$
 - $\log_a x \log_a y = \log_a \left(\frac{x}{y}\right)$
 - $\log_a (x^k) = k \log_a x$

(the multiplication law) (the division law) (the power law)

(the power law when k = -1)

- 5 You should also learn to recognise the following special cases:
 - $\log_a\left(\frac{1}{x}\right) = \log_a\left(x^{-1}\right) = -\log_a x$
 - $\log_a a = 1$ $(a > 0, a \neq 1)$
 - $\log_a 1 = 0$ $(a > 0, a \neq 1)$
- 6 Whenever f(x) = g(x), $\log_a f(x) = \log_a g(x)$