

Pure Mathematics P1 3 Equations and Inequalities Booklet

Year 12

HGS Maths

Name:

Class:

Contents

- 3.2) Quadratic simultaneous equations
- 3.3) Simultaneous equations on graphs
- 3.4) Linear inequalities
- 3.5) Quadratic inequalities
- 3.6) Inequalities on graphs
- 3.7) Regions

Extract from Formulae booklet Past Paper Practice Summary

Prior knowledge check

3.2) Quadratic simultaneous equations

The solution(s) to an equation may be:

A single value:	2x + 1 = 5
Multiple values:	$x^2 + 3x + 2 = 0$
An infinitely large set of values:	<i>x</i> > 3
No (real) values!	$x^2 = -1$
Every value!	$x^2 + x = x(x+1)$

The point is that you shouldn't think of the solution to an equation/inequality as an 'answer', but a <u>set</u> of values, which might just be a set of 1 value (known as a singleton set), a set of no values (i.e. the empty set \emptyset), or an infinite set (in the last example above, this was \mathbb{R})

The solutions to an equation are known as the solution set.

Solutions sets

For simultaneous equations, the same is true, except each 'solution' in the solution set is an assignment to **multiple** variables. All equations have to be satisfied **at the same time, i.e. 'simultaneously'**.

Scenario	Example	Solution Set
A single solution:	x + y = 9 $x - y = 1$	Solution 1: $x = 5$, $y = 4$ To be precise here, the solution set is of size 1, but this solution is an assignment to multiple variables, i.e. a pair of values.
Two solutions:	$x^{2} + y^{2} = 10$ $x + y = 4$	Solution 1: $x = 3$, $y = 1$ Solution 2: $x = 1$, $y = 3$ This time we have two solutions, each an x , y pair.
No solutions:	x + y = 1 $x + y = 3$	The solution set is empty, i.e. Ø, as both equation can't be satisfied at the same time.
Infinitely large set of solutions:	x + y = 1 $2x + 2y = 2$	Solution 1: $x = 0, y = 1$ Solution 2: $x = 1, y = 0$ Solution 3: $x = 2, y = -1$ Infinite possibilities!

Notes

419a: Solve non-linear simultaneous equations/systems of equations where y is the subject of both equations, to give a quadratic equation to be solved.

Solve the following simultaneous equations.

 $egin{cases} y=x^2-2x-31\ y=x-3 \end{cases}$

419c: Solve non-linear simultaneous equations/systems of equations with one equation given in the form $x^2 + y^2 = a$ and the other where x or y is the subject.

Solve the following simultaneous equations.

 $\begin{cases} y=3x+2\\ x^2+y^2=2 \end{cases}$

419d: Solve simultaneous equations/systems of equations given in the form ax + by = c and $x^2 + y^2 = d$

Solve the following simultaneous equations.

 $egin{cases} x+3y=4\ x^2+y^2=50 \end{cases}$

Solve:

$$\begin{aligned} xy &= 12\\ x &= y - 2 \end{aligned}$$

T.41 : 3B Qs all, P.17: 3.2 all Qs

3.3) Simultaneous equations on graphs

Notes

T.45 : 3C Qs 1-4, P.18: 3.3 all Qs 1-4

By using the discriminant of a subsequent equation, show that the graphs of 4x + y = 3 and $y = x^2 - 3x + 1$ have two points of intersection

Prove algebraically, and show graphically, that the lines never meet:

$$y = 3x - 3$$
$$y = x^2 + 5x + 4$$

The line with equation y = 3x + 4 meets the curve with equation

 $kx^{2} + 2y + (k - 8) = 0$ at exactly one point. Given that k is a positive constant:

a) Find the value of k.

b) For this value of k, find the coordinates of this point of intersection.

3.4) Linear inequalities

Recall that a **set** is a **collection of values** such that:

- a) The order of values does not matter.
- b) There are **no duplicates**.

Recap from GCSE:

- We use curly braces to list the values in a set, e.g. $A = \{1,4,6,7\}$
- If *A* and *B* are sets then *A* ∩ *B* is the **intersection** of *A* and *B*, giving a set which has the elements in *A* **and** *B*.
- $A \cup B$ is the **union** of A and B, giving a set which has the elements in A <u>or</u> in B.
- Ø is the empty set, i.e. the set with nothing in it.
- Sets can also be infinitely large. N is the set of natural numbers (all positive integers), Z is the set of all integers (including negative numbers and 0) and R is the set of all real numbers (including all possible decimals).
- We write $x \in A$ to mean "x is a member of the set A". So $x \in \mathbb{R}$ would mean "x is a real number".

$$\{1,2,3\} \cap \{3,4,5\} = \{\mathbf{3}\}$$
$$\{1,2,3\} \cup \{3,4,5\} = \{\mathbf{1},\mathbf{2},\mathbf{3},\mathbf{4},\mathbf{5}\}$$
$$\{1,2\} \cap \{3,4\} = \emptyset$$

Set Builder Notation

It is possible to construct sets without having to explicitly list its values. We use:

{expr | condition }
or {expr : condition }

Can you guess what sets the following give?

 $\{2x : x \in \mathbb{Z}\} = \{0, 2, -2, 4, -4, 6, -6, ...\}$ i.e. The set of all even numbers! $\{2^{x} : x \in \mathbb{N}\} = \{2, 4, 8, 16, 32, ...\}$ $\{xy : x, y \text{ are prime}\} = \{4, 6, 10, 14, 15, ...\}$ i.e. All possible products of two primes.

The | or : means "such that".

We previously talked about 'solutions sets', so set builder notation is very useful for specifying the set of solutions!

Examples

All odd numbers.

All (real) numbers greater than 5.

All (real) numbers less than 5 **or** greater than 7.

All (real) numbers between 5 and 7 inclusive.

 $\{2x+1 : x \in \mathbb{Z}\}$

{*x*: x > 5}

Technically it should be $\{x: x > 5, x \in \mathbb{R}\}$ but the x > 5 by default implies **real numbers** greater than 5.

{x: x < 5} \cup {x: x > 7}

We combine the two sets together.

{*x*: $5 \le x \le 7$ }

While we could technically write $\{x: x \ge 5\} \cap \{x: x \le 7\}$, we tend to write multiple required conditions within the same set.

Notes

If x < 3 and $2 \le x < 4$, what is the combined solution set?

Use set notation to describe the set of values for which:

$$10(9x+8) < 7 \text{ or } 6(5x-4) \ge \frac{3-2x}{4}$$

3.5) Quadratic inequalities		

Notes

```
458a: Solve quadratic inequalities given in the form x^2 + bx + c > 0 or x^2 + bx + c < 0
```

Solve:

 $x^2+4x\geq 0$

458d: Solve inequalities requiring rearrangement to the form $x^2 + bx + c > 0$ or $x^2 + bx + c < 0$

Solve the inequality

z(z-3)<2(z-2)

458g: Solve quadratic inequalities requiring rearrangement to the form $ax^2 + bx + c > 0$ or $ax^2 + bx + c < 0$

Solve the inequality

m(2m-5)+3<0

458j: Solve quadratic inequalities given in the form $ax^2 > b$ or $ax^2 < b$

Solve the inequality

 $5z^2 \geq 20$

458k: Solve quadratic inequalities given in the form $-x^2+bx+c>0$ or $-x^2+bx+c<0$ Solve: $5k-6-k^2\leq 0$

Find the set of values for which $\frac{10}{x} > 5$, $x \neq 0$

Worked Example Find the set of values for which $\frac{5}{x-3} < 2$

458m: Solve quadratic inequalities involving a division by a positive algebraic expression.

Solve

 $1<\frac{7x}{2x^2+3}$

4580: Combine a linear and a quadratic inequality.

n is an integer such that $7n-4\geq 24$ and $\displaystylerac{5n}{n^2+4}\geq 1$

Find all the possible values of n.

The equation $kx^2 - 5kx + 50 = 0$, where k is a constant, has no real roots. Prove that k satisfies the inequality $0 \le k < 8$

3.6) Inequalities on graphs		

Notes

 L_1 has equation y = 12 - 4x.

 L_2 has equation $y = x^2$.

The diagram shows a sketch of L_1 and L_2 on the same axes.

- a) Find the coordinates of the points of intersection.
- b) Hence write down the solution to the inequality $12 4x > x^2$

3.7) Regions		

Notes

Worked Example Shade the region that satisfies the inequalities: $4y + x \le 12$ $y > x^2 - 5x - 6$

Page 57

Page 59

Page 60

Past Paper Questions

In this question you should show all stages of your working. 1. Solutions relying on calculator technology are not acceptable. Using algebra, solve the inequality $x^2 - x > 20$ writing your answer in set notation. (3)

(3 marks			marks)
		(3)	
	Presents solution in set notation $\{x: x < -4\} \cup \{x: x > 5\}$ oe	A1	2.5
	Chooses outside region for their values Eg. $x > 5$, $x < -4$	MI	1.1b
1	Finds critical values $x^2 - x > 20 \Rightarrow x^2 - x - 20 > 0 \Rightarrow x = (5, -4)$	M1	1.1b
Question	Scheme	Marks	AOs

Summary of Key Points

Summary of key points

- 1 Linear simultaneous equations can be solved using elimination or substitution.
- 2 Simultaneous equations with one linear and one quadratic equation can have up to two pairs of solutions. You need to make sure the solutions are paired correctly.
- 3 The solutions of a pair of simultaneous equations represent the points of intersection of their graphs.
- **4** For a pair of simultaneous equations that produce a quadratic equation of the form $ax^2 + bx + c = 0$:
 - $b^2 4ac > 0$ two real solutions
 - $b^2 4ac = 0$ one real solution
 - $b^2 4ac < 0$ no real solutions
- **5** The solution of an inequality is the set of all real numbers *x* that make the inequality true.
- 6 To solve a quadratic inequality:
 - Rearrange so that the right-hand side of the inequality is 0
 - · Solve the corresponding quadratic equation to find the critical values
 - · Sketch the graph of the quadratic function
 - · Use your sketch to find the required set of values.
- 7 The values of x for which the curve y = f(x) is **below** the curve y = g(x) satisfy the inequality f(x) < g(x).

The values of x for which the curve y = f(x) is **above** the curve y = g(x) satisfy the inequality f(x) > g(x).

- 8 y < f(x) represents the points on the coordinate grid below the curve y = f(x).
 - y > f(x) represents the points on the coordinate grid above the curve y = f(x).
- 9 If y > f(x) or y < f(x) then the curve y = f(x) is not included in the region and is represented by a dotted line.</p>

If $y \ge f(x)$ or $y \le f(x)$ then the curve y = f(x) is included in the region and is represented by a solid line.