

Year 12 Pure Mathematics P1 12 Differentiation Booklet

Dr Frost Course

HGS Maths

Name:

Class:

Contents

- <u>12.3 Differentiating x^n </u>
- 12.4 Differentiating Quadratics
- 12.5 Differentiating Functions with Two or More Terms
- 12.6 Gradients, Tangents and Normals
- **12.7 Increasing and Decreasing Functions**
- 12.8 Second Order Derivatives
- 12.9 Stationary Points
- 12.10 Sketching Gradient Functions
- 12.11 Modelling with Differentiation
- 12.2 Finding the Derivative

Extract from Formulae booklet Past Paper Practice Summary

Prior knowledge check

12.3 Differentiating x^n

If $y = ax^n$ then $\frac{dy}{dx} = nax^{n-1}$ (where a, n are constants) i.e. multiply by the power and reduce the power by 1

The **operator** for differentiating is: $\frac{d}{dx}(...)$ - which means differentiate <u>with respect to x</u> whatever is in the bracket.

We also use f(x) notation, i.e.

If
$$y = f(x)$$
, then $\frac{dy}{dx} = f'(x)$

i.e. f'(x) is the derivative of f(x)

Notes

Differentiate with respect to x: a) x^5

a)

 $-3x^{5}$ b)

Find the derivative, f'(x), when f(x) equals:

a) *x*⁶

- b) $x^{\frac{1}{2}}$
- c) x^{-2}
- d) $x^2 \times x^3$
- e) $\frac{x}{x^5}$

T.263: 12C Qs 1, P. 94: 12.3 Qs 1

a) $\frac{1}{x^4}$ b) $\frac{7}{8x^4}$

Differentiate with respect to *x*:

a) $\sqrt{16x^8}$

b) $\sqrt{9}x^8$

12.4 Differentiating Quadratics

Find $\frac{dy}{dx}$ given that y equals: a) $x^2 + 3x$

- 8*x* 7 b)
- $4x^2 3x + 5$ c)

Find the gradient of the curve: $y = 3x^2 - 2x + 1$ at (-2, 17)

Find the coordinates of the point(s) where the gradient is 4:

- a) $y = x^2 8x + 3$ b) $y = 5x^2 x + 7$

Let $f(x) = 4x^2 - 8x + 3$

- a) Find the gradient of y = f(x) at the point $\left(\frac{1}{2}, 0\right)$
- b) Find the coordinates of the point on the graph of y = f(x) where the gradient is 8
- c) Find the gradient of y = f(x) at the points where the curve meets the line y = 4x 5

12.5 Differentiating Functions with Two or More Terms

Notes

Differentiate with respect to x: $y = 5x^4 - 2x^7 + 12345 - x^5$

Find $\frac{dy}{dx}$ given that y equals: a) $4x^3 + 2x$ b) $x^3 + x^2 - x^{\frac{1}{2}}$ c) $\frac{1}{3}x^{\frac{1}{2}} + 4x^2$

Differentiate with respect to *x*:

$$y = 3\sqrt{x} + 4x^{\frac{5}{3}} - \frac{5}{x} + \frac{1}{\sqrt[3]{x}}$$

Differentiate with respect to *x*: $f(x) = x^2(x - 3)$

Differentiate with respect to *x*: $\frac{(2x+3)^2}{5x}$ f(x) =

Differentiate with respect to *x*:

 $f(x) = \frac{x^2 + 3}{\sqrt{x}}$

Differentiate with respect to *x*: $(x + 2)^3$ y = - $3x^2$

Differentiate with respect to *x*: 1 + 2x $y = \frac{1}{3x\sqrt{x}}$

12.6 Gradients, Tangents and Normals

 $\frac{dy}{dx}$ evaluated at a given point P(x, y) gives the value of the tangent at P

I.e. for the equation of the tangent:

$$y - y_1 = \mathbf{m}(x - x_1)$$

$$m = \frac{dy}{dx}$$
 evaluated at x_1

On your calculator this is written as:

$$\left. \frac{d}{dx} (-) \right|_{x=1}$$

Notes

Find the gradient of the curve:

$$y = 5\sqrt{x} - \frac{3}{x}$$
 at (16, $\frac{317}{16}$

Find the coordinates of the point(s) where the gradient is 2: $y = x^3 - 3x^2 - 7x + 8$

For the curve y = f(x), $\frac{dy}{dx} = \frac{3}{2} - kx^4 + k$, where k is a constant. When x = -2, the gradient of the curve is -6. Find k.

Worked Example		
Find the equation of the tangent to the curve $y = x^3$ when $x = 2$		

520c: Find an equation of a tangent to a polynomial curve.

Find an equation of the tangent to the curve $y = x^2 + x + 1$ at the point (4, 21).

520d: Find an equation of a normal to a polynomial curve.

Find an equation of the normal to the curve $y = 2x^2 + 4$ at the point (5,54).
Find the equation of the normal to the curve with equation $y = 8 - 3\sqrt{x}$ at the point where x = 4. Give your answer in the form ax + by + c = 0

520f: Determine the coordinate of a point on a curve given the equation of a line parallel to the tangent or normal.

A curve y=f(x) has the equation $f(x)=3x^3+18x^2+41x+33.$

The tangent at point P is parallel to the line 5y-25x=27

Find the coordinates of P.

520g: Determine the equation of a tangent or normal to a curve where the function involves fractional or negative powers.

The curve
$$y=f(x)$$
 is given by $f(x)=3x^3+rac{6}{\sqrt{x}}-40$

The point P lies on the curve and has coordinates (1,-31).

Find an equation of the tangent to the curve at P.

520h: Determine the equation of the tangent or normal of a curve at an intercept with the axes.

The curve y=f(x) is given by the equation $f(x)=7x^3+6x^2-6x+26$

Find an equation of the normal to the curve at the point where it intercepts the y-axis.

The point *P* with *x*-coordinate $\frac{1}{2}$ lies on the curve with equation $y = 4x^2$. The normal to the curve at *P* intersects the curve at points *P* and *Q*. Find the coordinates of *Q*

12.7 Increasing and Decreasing Functions

Notes

516a: Understand the terms increasing and decreasing and apply to a drawn graph.

A sketch of the curve y=f(x) is shown below.

Using the graph, find the interval in which f(x) is decreasing.

516b: Determine the interval for which a quadratic function is increasing or decreasing.

A sketch of the curve y=f(x) is shown below.

The curve has the gradient function $rac{\mathrm{d}y}{\mathrm{d}x} = -12x^3 - 13x^2 + 14x \cdot$

Find the interval in which the curve is increasing.

516d: Determine the interval for which a cubic function is increasing or decreasing.

Find the interval on which the function $y = 3x^3 + 12x^2 - 9x - 8$ is increasing.

516f: Determine the range of values for which a function is increasing/decreasing involving a reciprocal term.

A function is given by the equation

$$f(x) = -3x - rac{32}{x} - 20, \ \ x
eq 0$$

Find the exact interval on which f(x) is decreasing.

Show that the function

 $f(x) = x^3 + 6x^2 + 21x + 2$ is increasing for all real values of x.

Show that the function $3 + 4x(-x^2 - 5)$ is decreasing for all $x \in \mathbb{R}$

When you differentiate once, the expression you get is known as the **first derivative**. Unsurprisingly, when we differentiate a second time, the resulting expression is known as the **second derivative**. And so on...

Notes

Notes

515a: Determine the second derivative of a function.

A function is given by the equation

 $y = \left(4x^5 + 3x^2\right)^2$ Find an expression for $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}$.

If $f(x) = 3\sqrt{x} + \frac{1}{2\sqrt{x}}$, find f''(x)

515b: Evaluate the second derivative of a function at a specific point.

A function is given by the equation

$$f(x) = rac{3x^{10}+2x^5}{x^6}$$

Determine f''(-4).

Give your answer to three significant figures.

12.9 Stationary Points

A stationary point is where the gradient is 0, i.e. f'(x) = 0.

Note: It's called a 'local' maximum because it's the function's largest output within the vicinity. Functions may also have a 'global' maximum, i.e. the maximum output across the entire function. This particular function doesn't have a global maximum because the output keeps increasing up to infinity. It similarly has no global minimum, as with all cubics.

How do we tell what type of stationary point?

Using the second derivative

At a stationary point x = a:

- If f''(a) > 0 the point is a local minimum.
- If f''(a) < 0 the point is a local maximum.
- If f''(a) = 0 it could be any type of point, so resort to Method 1.

Recall the gradient gives a measure of the **rate of change** of y, i.e. how much the y value changes as x changes.

Thus by differentiating the gradient function, the <u>second</u> <u>derivative tells us the rate at</u> <u>what the gradient is changing</u>.

Thus if the second derivative is positive, the gradient is increasing. If the second derivative is

negative, the gradient is decreasing.

At a maximum point, we can see that as x increases, the gradient is decreasing from a positive value to a negative value.

$$\therefore \frac{d^2 y}{dx^2} < 0$$

Find the least value of $f(x) = x^2 - 4x + 9$

Find the turning point of $y = \sqrt{x} - x$

Find the stationary point on the curve with equation

 $y = x^4 - 32x$, and determine whether it is a local maximum, a local minimum or a point of inflection.

Find the coordinates of the stationary points on the curve with equation $y = 2x^3 - 15x^2 + 24x + 6$ and use the second derivative to determine their nature.

12.10 Sketching Gradient Functions

The new A Level specification specifically mentions being able to sketch y = f'(x).

If you know the function f'(x) explicitly (e.g. because you differentiated y = f(x)), you can use your knowledge of sketching straight line/quadratic/cubic graphs. But in other cases you won't be given the function explicitly, but just the sketch.

Notes

Notes

A positive cubic has the equation y = f(x).

The curve has stationary points at (-1, 4) and (1, 0) and cuts the x-axis at (-3, 0).

Sketch the gradient function, y = f'(x), showing the coordinates of any points where the curve cuts or meets the x-axis.

The diagram shows the curve with equation y = f(x). The curve has an asymptote at y = -2 and a turning point at (-3, -8). It cuts the x-axis at (-10, 0).

- a) Sketch the graph of y = f'(x).
- b) State the equation of the asymptote of y = f'(x).

12.11 Modelling with Differentiation

1. Optimisation Problems/Modelling, e.g. We have a sheet of A4 paper, which we want to fold into a cuboid. What height should we choose for the cuboid in order to maximise the volume? Rate of change: 2. Up to now we've had y in terms of x, where $\frac{dy}{dx}$ means "the **<u>rate</u>** at which y changes with respect to $x^{\prime\prime}$. But we can use similar gradient function notation for other physical quantities. Real Life A sewage container fills at a Maths! rate of 20 cm³ per second. How could we use appropriate notation to represent this? $\frac{dV}{dt} = 20 \ cm^3/s$ "The rate at which the volume V changes with respect to time t."

Example Optimisation Problem

Optimisation problems in an exam usually follow the following pattern:

- There are 2 variables involved (you may have to introduce one yourself), typically lengths.
- There are expressions for two different physical quantities:
 - One is a **constraint**, e.g. "the surface area is 20cm²".
 - The other we wish to maximise/minimise, e.g. "we wish to maximise the volume".
- We use the constraint to <u>eliminate one of the variables</u> in the latter equation, so that it is then just in terms of one variable, and we can then use differentiation to find the turning point.

Notes
Worked Example

Given that the volume, $V cm^3$, of an expanding sphere is related to its radius, r cm, by the formula $V = \frac{4}{3}\pi r^3$, find the rate of change of volume with respect to radius at the instant when the radius is 5 cm.

Worked Example

A cuboid is to be made from 54m² of sheet metal.

The cuboid has a horizontal base and no top.

The height of the cuboid is x metres.

Two of the opposite vertical faces are squares.

- a) Show that the volume, V m³, of the tank is given by $V = 18x \frac{2}{3}x^3$.
- b) Given that *x* can vary, use differentiation to find the maximum or minimum value of *V*.
- c) Justify that the value of V you have found is a maximum

12.2 Finding the Derivative

Where does the rule/method we have been using come from?

At GCSE you learnt how to *estimate* the gradient of a curve by *sketching* the tangent and then finding the gradient of the tangent at that point.

We can generalise this idea to the gradient of a *chord* from the point P(x, f(x)) we are interested in to a point some distance away Q(x + h, f(x + h)), i.e.

Notes

The gradient of this chord is not the actual gradient at P (*i.e. the gradient of the tangent to* y = f(x)) at P). It is an approximation.

The approximation will get better as the distance between P and Q reduces, i.e. h gets smaller, which we write as $h \rightarrow 0$ (read as h tends to zero)

Therefore, you need to know and use:

The gradient function, or derivative, of the curve y = f(x) is written as f'(x) or $\frac{dy}{dx}$. $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ The gradient function can be used to find the gradient of the curve for any value of x.

Practically you don't have to use the $\lim_{h \to 0}$ formulae books/textbooks.

bit, just use $h \rightarrow 0$. The above is just how it is stated in

Notes

Worked Example

The point A with coordinates (4, 16) lies on the curve with equation $y = x^2$. At point A the curve has gradient g.

a) Show that
$$g = \lim_{h \to 0} (8 + h)$$

b) Deduce the value of g.

Worked Example
Prove from first principles that the derivative of $5x$ is 5

Worked Example
Prove from first principles that the derivative of $5x^2$ is $10x$

Worked Example
Prove from first principles that the derivative of x^3 is $3x^2$

Extract from Formulae book

Differentiation

First Principles

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Past Paper Questions

1. The curve C has equation Exams $y = 3x^4 - 8x^3 - 3$ Formula Booklet Past Papers (a) Find (i) $\frac{dy}{dx}$ Practice Papers past paper Qs by topic (ii) $\frac{d^2 y}{dx^2}$ (3)(b) Verify that C has a stationary point when x = 2Past paper practice by (2)topic. Both new and old (c) Determine the nature of this stationary point, giving a reason for your answer. specification can be (2)found via this link on hgsmaths.com (7 marks) (2) $\frac{d}{dx^2} = 48 > 0$ and states "hence the stationary point is a minimum" Alft 2.2a Substitutes x = 2 into their $\frac{a}{dx^2} = 36 \times 2^2 - 48 \times 2$ **I.1b** MI (c) (2) Shows $\frac{dy}{dx} = 0$ and states "hence there is a stationary point" A1 2.1 Substitutes x = 2 into their $\frac{dy}{dx} = 12 \times 2^3 - 24 \times 2^2$ 1.1b MI (p) (3)

(ii) $\frac{d^2y}{dx^2} = 36x^2 - 48x$

(i) $\frac{dy}{dx} = 12x^3 - 24x^2$

1(a)

1.1b

I.Ib

AIft

A1

MI 1.1b

N	curve at that point. The gradient function .	or deriva	tive	of the curve v	= $f(x)$ is written as $f'(x)$ or $\frac{dy}{dx}$
	$f'(x) = \lim_{h \to 0} \frac{f(x+h)}{h}$	-f(x)	d to fi	id the gradie	dx dx dt of the curve for any value of x .
~	For all real values of n , is If $f(x) = x^n$ then $f'(x)$ If $y = x^n$ then $\frac{dy}{dx}$	Ind for a c = nx^{n-1} = nx^{n-1}	onsta	it a: • If $f(x)$ • If y	$= ax^{n} \text{ then } f'(x) = anx^{n-1}$ $= ax^{n} \text{ then } \frac{dy}{dx} = anx^{n-1}$
4 5	For the quadratic curve $\frac{dy}{dx} = 2ax + b$ f $y = f(x) \pm g(x)$, then $\frac{d}{dx}$	with equal $\frac{y}{x} = f'(x) \pm \frac{y}{x}$	ation j g'(x)	$=ax^{2}+bx+$	c, the derivative is given by
9	The tangent to the curv y - f(a) = f'(a)(x - a)	x e y = f(x) t)	at the	point with co	ordinates $(a, f(a))$ has equation
~	The normal to the curve $y - f(a) = -\frac{1}{f'(a)}(x)$	$y = f(x) \hat{a}$ - a)	at the	ooint with coo	ordinates $(a, f(a))$ has equation
8	• The function $f(x)$ is i a < x < b. • The function $f(x)$ is d a < x < b.	icreasing ecreasing	on the	e interval [<i>a</i> , <i>i</i> e interval [<i>a</i> ,	5] if $f'(x) \ge 0$ for all values of x such that b] if $f'(x) \le 0$ for all values of x such that
9 10	Differentiating a functio	y = f(x) $y = f(x) w$	twice here f	gives you the $(x) = 0$ is called	e second order derivative, $f''(x)$ or $\frac{d^2y}{dx^2}$ ed a stationary point . For a small positi
	/alue //:	61 IA	611.5	61 TA	
	Local maximum	Positive	0	Negative	
	Local minimum	Negative	0	Positive	
	Point of inflection	Negative Positive	0 0	Positive	
11	f a function $f(x)$ has a s if $f''(a) > 0$, the point	tationary is a local	point minir	when $x = a$, the number of the second seco	hen:
-	• if $f''(a) < 0$, the point f $f''(a) = 0$, the point co	is a local uld be a lo	maxii ocal m	num. nimum, a loc	al maximum or a point of inflection.
	fou will need to look at	points on	eithe	side to deter	mine its nature.

Page 138

T.282: mixed ex., P. 103: BSG