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12.3 Differentiating 𝒏

The operator for differentiating is:  ௗ

ௗ௫
- which means differentiate with respect to x whatever is 

in the bracket.

We also use notation, i.e.
If , then ௗ௬

ௗ௫
= 

i.e. ᇱ is the derivative of 
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 If  then ௗ௬

ௗ௫
ିଵ (where are constants)

i.e. multiply by the power and reduce the power by 1



Notes
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Worked Example
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Differentiate with respect to 𝑥:
a) 𝑥ହ

b) −3𝑥ହ



Worked Example
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Find the derivative, 𝑓ᇱ 𝑥 , when 𝑓 𝑥 equals:
a) 𝑥

b) 𝑥
భ

మ

c) 𝑥ିଶ

d) 𝑥ଶ  ×  𝑥ଷ

e) ௫

௫ఱ

T.263: 12C Qs 1, P. 94: 12.3 Qs 1



Worked Example
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Differentiate with respect to 𝑥:
a) 𝑥ఱ

b) ଷ

ହ
𝑥



Worked Example
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Differentiate with respect to 𝑥:
a) ଵ

௫ర

b) 

଼௫ర



Worked Example
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Differentiate with respect to 𝑥:
3

5 𝑥



Worked Example
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Differentiate with respect to 𝑥:
a) 16𝑥଼

b) 9𝑥଼

T.263: 12C Qs 2, P. 94: 12.3 Qs 2



Worked Example
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Find ௗ௬

ௗ௫
when 𝑦 equals:

a) 7𝑥ଷ

b) −4𝑥
భ

మ

c) 3𝑥ିଶ

d) ଼௫ళ

ଷ௫

e) 36𝑥ଷ

T.263: 12C Qs 3+ P. 94: 12.3 Qs 3+



12.4 Differentiating Quadratics
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Worked Example
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Find ௗ௬

ௗ௫
given that 𝑦 equals:

a) 𝑥ଶ + 3𝑥
b) 8𝑥 − 7
c) 4𝑥ଶ − 3𝑥 + 5



Worked Example
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Find the gradient of the curve:
𝑦 = 3𝑥ଶ − 2𝑥 + 1 at (−2, 17)

T.265: 12D Qs 1-4 P. 94: 12.4 Qs 1-2



Worked Example
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Find the coordinates of the point(s) where the gradient is 4:
a) 𝑦 = 𝑥ଶ − 8𝑥 + 3
b) 𝑦 = 5𝑥ଶ − 𝑥 + 7



Worked Example
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Let 𝑓 𝑥 = 4𝑥ଶ − 8𝑥 + 3

a) Find the gradient of 𝑦 = 𝑓 𝑥 at the point ଵ

ଶ
, 0

b) Find the coordinates of the point on the graph of 𝑦 = 𝑓 𝑥 where the gradient is 8
c) Find the gradient of 𝑦 = 𝑓 𝑥 at the points where the curve meets the line 𝑦 = 4𝑥 − 5

T.265: 12D Qs 5+ P. 94: 12.4 Qs 3+



12.5 Differentiating Functions with Two or More Terms
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Notes
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Worked Example
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Differentiate with respect to 𝑥:
𝑦 = 5𝑥ସ − 2𝑥 + 12345 − 𝑥ହ



Worked Example
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Find ௗ௬

ௗ௫
given that 𝑦 equals:

a) 4𝑥ଷ + 2𝑥

b) 𝑥ଷ + 𝑥ଶ − 𝑥
భ

మ

c) ଵ

ଷ
𝑥

భ

మ + 4𝑥ଶ

T.267: 12E Qs 1-3 P. 95: 12.5 Qs 1



Worked Example
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Differentiate with respect to 𝑥:

𝑦 = 3 𝑥 + 4𝑥
ହ
ଷ −

5

𝑥
+

1

𝑥య



Worked Example
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Differentiate with respect to 𝑥:
𝑓(𝑥) = 𝑥ଶ 𝑥 − 3



Worked Example
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Differentiate with respect to 𝑥:

𝑓(𝑥) =
2𝑥 + 3 ଶ

5𝑥



Worked Example
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Differentiate with respect to 𝑥:

𝑓(𝑥) =
𝑥ଶ + 3

𝑥



Worked Example
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Differentiate:
a) ଵ

ସ ௫

b) 𝑥ଶ 3𝑥 + 1

c) ௫ିଶ

௫మ



Worked Example
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Differentiate with respect to 𝑥:

𝑦 =
𝑥 + 2 ଷ

3𝑥ଶ



Worked Example
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Differentiate with respect to 𝑥:

𝑦 =
1 + 2𝑥

3𝑥 𝑥

T.267: 12E Qs 4+ P. 95: 12.5 Qs 2+



12.6 Gradients, Tangents and Normals
ௗ௬

ௗ௫
evaluated at a given point gives the value of the tangent at P

I.e. for the equation of the tangent:

ଵ ଵ

ௗ௬

ௗ௫
evaluated at  ଵ

*for the normal use the negative reciprocal

On your calculator this is written as:

௫ୀ

Page 50

Graph shows tangent line to curve. | Desmos



Notes
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Worked Example
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Find the gradient of the curve:
𝑦 = 5 𝑥 −

ଷ

௫
at (16,

ଷଵ

ଵ
)



Worked Example
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Find the coordinates of the point(s) where the gradient is 2:
𝑦 = 𝑥ଷ − 3𝑥ଶ − 7𝑥 + 8



Worked Example
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For the curve 𝑦 = 𝑓(𝑥),
𝑑𝑦

𝑑𝑥
=

3

2
− 𝑘𝑥ସ + 𝑘,

where 𝑘 is a constant.
When 𝑥 = −2, the gradient of the curve is −6. Find 𝑘.



Worked Example
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Find the equation of the tangent to the curve 𝑦 = 𝑥ଷ when 𝑥 = 2



Worked Example
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Worked Example
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Worked Example
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Find the equation of the normal to the curve with equation 𝑦 = 8 − 3 𝑥 at the point where 𝑥 = 4.
Give your answer in the form 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0

T.269: 12F Qs 1-2 P. 96: 12.6 Qs 1-5



Worked Example

Page 63



Worked Example
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Worked Example
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Worked Example
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The point 𝑃 with 𝑥-coordinate ଵ
ଶ

lies on the curve with equation 𝑦 = 4𝑥ଶ.
The normal to the curve at 𝑃 intersects the curve at points 𝑃 and 𝑄.
Find the coordinates of 𝑄

T.269: 12F Qs 3+, P. 96: 12.6 Qs 6+



12.7 Increasing and Decreasing Functions
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Notes
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Worked Example
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Worked Example
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Worked Example
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Worked Example

Page 75 T.271: 12G Qs 1-2, P. 97: 12.7 Qs 1-3



Worked Example

Page 76

Show that the function 
𝑓 𝑥 = 𝑥ଷ + 6𝑥ଶ + 21𝑥 + 2 is increasing for all real values of 𝑥.



Worked Example
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Show that the function 3 + 4𝑥(−𝑥ଶ − 5) is decreasing for all 𝑥 ∈ ℝ

T.271: 12G Qs 3+, P. 97: 12.7 Qs 4+



12.8 Second Order Derivatives
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Notes
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Notes
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Worked Example
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If 𝑦 = 3𝑥ହ +
ସ

௫మ, find ௗ
మ௬

ௗ௫మ



Worked Example
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If 𝑓 𝑥 = 3 𝑥 +
ଵ

ଶ ௫
, find 𝑓′′(𝑥)



Worked Example

Page 87 T.272: 12H Qs all, P. 98: 12.8 Qs all



12.9 Stationary Points

Page 88

A stationary point is where the gradient is 0, i.e. ᇱ .

𝑓ᇱ 𝑥 = 0

𝑓ᇱ 𝑥 = 0

Local maximum

Local minimum

Note: It’s called a ‘local’ maximum 
because it’s the function’s largest 
output within the vicinity. Functions 
may also have a ‘global’ maximum, i.e. 
the maximum output across the entire 
function. This particular function 
doesn’t have a global maximum 
because the output keeps increasing up 
to infinity. It similarly has no global 
minimum, as with all cubics.



How do we tell what type of stationary point?
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Using the second derivative
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At a stationary point :
• If ᇱᇱ the point is a local minimum.
• If ᇱᇱ the point is a local maximum.
• If ᇱᇱ it could be any type of point, so resort to Method 1.



Worked Example
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Find the least value of 
𝑓 𝑥 = 𝑥ଶ − 4𝑥 + 9

T.276: 12I Qs 1-2, P. 98: 12.9 Qs 1-3



Worked Example
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Find the turning point of
𝑦 = 𝑥 − 𝑥



Worked Example

Page 95

Find the stationary point on the curve with equation 
𝑦 = 𝑥ସ − 32𝑥, and determine whether it is a local maximum, a local minimum or a point of inflection.



Worked Example
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Find the coordinates of the stationary points on the curve with equation 𝑦 = 2𝑥ଷ − 15𝑥ଶ + 24𝑥 + 6 and use the second 
derivative to determine their nature.

T.276: 12I Qs 3+, P. 98: 12.9 Qs 4+



12.10 Sketching Gradient Functions
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Notes
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Notes
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Worked Example
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Sketch 𝑦 = 𝑓′(𝑥) on the same axes



Worked Example
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Sketch 𝑦 = 𝑓′(𝑥) on the same axes



Worked Example
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A positive cubic has the equation 𝑦 = 𝑓(𝑥).
The curve has stationary points at (−1, 4) and (1, 0) and cuts the 𝑥-axis at (−3, 0).
Sketch the gradient function, 𝑦 = 𝑓′(𝑥), showing the coordinates of any points where the curve cuts or meets the 𝑥-axis.

T.278: 12J Qs 1, P. 99: 12.10 Qs 1



Worked Example
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The diagram shows the curve with equation 𝑦 = 𝑓(𝑥). The curve has an asymptote at 𝑦 = −2 and a turning point at (−3, −8). It 
cuts the 𝑥-axis at (−10, 0).
a) Sketch the graph of 𝑦 = 𝑓′(𝑥).
b) State the equation of the asymptote of  𝑦 = 𝑓′(𝑥).

T.278: 12J Qs 2, P. 99: 12.10 Qs 2,3



12.11 Modelling with Differentiation

1. Optimisation Problems/Modelling, e.g.

2. Rate of change:  
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Example Optimisation Problem
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Notes
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Worked Example
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Given that the volume, 𝑉 𝑐𝑚ଷ, of an expanding sphere is related to its radius, 𝑟 𝑐𝑚, by the formula 𝑉 =
ସ

ଷ
𝜋𝑟ଷ, find the rate of 

change of volume with respect to radius at the instant when the radius is 5 𝑐𝑚.



Worked Example
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A cuboid is to be made from 54m2 of sheet metal. 
The cuboid has a horizontal base and no top.
The height of the cuboid is 𝑥 metres. 
Two of the opposite vertical faces are squares.
a) Show that the volume, V m3, of the tank is given by 𝑉 = 18𝑥 −

ଶ

ଷ
𝑥ଷ.

b) Given that 𝑥 can vary, use differentiation to find the maximum or minimum value of 𝑉.
c) Justify that the value of 𝑉 you have found is a maximum

T.281: 12K Qs all, P. 101: 12.11 Qs all



12.2 Finding the Derivative

Where does the rule/method we have been using come from?

At GCSE you learnt how to estimate the gradient of a curve by sketching the tangent and then 
finding the gradient of the tangent at that point.

We can generalise this idea to the gradient of a chord from the point we are interested in 
to a point some distance away , i.e.

So the gradient of the chord PQ is
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Notes

The gradient of this chord is not the actual gradient at P (i.e. the gradient of the tangent to 
at P).  It is an approximation.

The approximation will get better as the distance between P and Q reduces, i.e. h gets smaller, which 
we write as (read as tends to zero)

Therefore, you need to know and use:

Practically you don’t have to use the             bit, just use  .  The above is just how it is stated in 
formulae books/textbooks. 
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Notes
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Worked Example
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The point 𝐴 with coordinates 4, 16 lies on the curve with equation 𝑦 = 𝑥ଶ.
At point 𝐴 the curve has gradient 𝑔.
a) Show that 𝑔 = lim

→
8 + ℎ

b) Deduce the value of 𝑔.

T.261: 12B Qs 1-4, P. 93: 2.2 Qs 1,2



Worked Example
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Prove from first principles that the derivative of 5𝑥 is 5



Worked Example
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Prove from first principles that the derivative of 5𝑥ଶ is 10𝑥



Worked Example
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Prove from first principles that the derivative of 𝑥ଷ is 3𝑥ଶ

T.261: 12B Qs 5+, P. 93: 2.2 Qs 3+



Extract from Formulae book
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Past Paper Questions
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Past paper practice by 
topic.  Both new and old 
specification can be 
found via this link on 
hgsmaths.com 



Summary of Key Points

Page 138 T.282: mixed ex., P. 103: BSG


