

HGS Maths

Year 12 Pure Mathematics P1 6 Circles Booklet

Dr Frost Course

Name:

Class:

Contents

6.1) Midpoints and perpendicular bisectors - recap and review

6.2) Equation of a circle

6.3) Intersections of straight lines and circles

6.4) Use tangent and chord properties

6.5) Circles and triangles

Past Paper Practice Summary

Prior knowledge check

Prior knowledge check

- 1 Write each of the following in the form $(x + p)^2 + q$:
 - **a** $x^2 + 10x + 28$ **b** $x^2 6x + 1$
 - **c** $x^2 12x$ **d** $x^2 + 7x$ \leftarrow Section 2.3
- 2 Find the equation of the line passing through each of the following pairs of points:
 - a A(0, -6) and B(4, 3)
 - **b** P(7, -5) and Q(-9, 3)
 - c R(-4, -2) and T(5, 10) ← Section 5.3
- 3 Use the discriminant to determine whether the following have two real solutions, one real solution or no real solutions.
 - **a** $x^2 7x + 14 = 0$
 - **b** $x^2 + 11x + 8 = 0$
 - **c** $4x^2 + 12x + 9 = 0$
- 4 Find the equation of the line that passes through the point (3, -4) and is perpendicula to the line with equation 6x - 5y - 1 = 0

← Section 5.

← Section 2.

6.1) Midpoints and perpendicular bisectors

Notes

495e: Determine the perpendicular bisector of a line using $y - y_1 = m(x - x_1)$

 $g \quad g_1 = m(\omega \quad \omega_1)$

A straight line passes through the points A(5,-3) and B(9,9).

Find the equation of the perpendicular bisector of AB.

Give your answer in the form y = mx + c.

Simplify your answer where possible.

A line segment *AB* is the diameter of a circle with centre (4, -5). If *A* has coordinates (2, -1), what are the coordinates of *B*?

6.2) Equation of a circle

Recall that a line can be a set of points (x, y) that satisfy some equation. Suppose we have a point (x, y) on a circle centred at the origin, with radius r. What equation must (x, y) satisfy?

(Hint: draw a right-angled triangle inside your circle, with one vertex at the origin and another at the circumference)

 $x^2 + y^2 = r^2$

Notes

Notes

Quickfire Questions

Centre	Radius	Equation	
(0,0)	5		
(1,2)	6		
		$(x+3)^2 + (y-5)^2 = 1$	
		$(x+5)^2 + (y-2)^2 = 49$	
		$(x+6)^2 + y^2 = 16$	
		$(x-1)^2 + (y+1)^2 = 3$	
		$(x+2)^2 + (y-3)^2 = 8$	
		$[(x + 2) + (y - 3)^{-} = 8]$	

496a: Determine the equation of a circle, not centred at the origin, given its centre and an integer radius.

A circle has centre (11,5) and radius 7.

Write down the equation of the circle.

Give your answer in the form

$$(x-a)^2 + (y-b)^2 = r^2$$

496b: Determine the equation of a circle, not centred at the origin, which is drawn.

Find an equation of the circle drawn below.

Skill involved: 496d: Determine the centre and radius of a circle given in completed square form.

Find the centre and exact value of the radius of the circle with equation

 $(x+1)^2 + (y+5)^2 = 19$

where the centre of the circle is (a, b).

Skill involved: 496e: Determine the equation of a circle, with given centre and radius/diameter, in expanded form.

Write down the equation of a circle with centre (0, -1) and diameter of $6\sqrt{3}$

Give your answer in the form $x^2 + y^2 + ay + b = 0$, where *a* and *b* are constants to be found.

K328g: Find the equation of a circle using the endpoints of the diameter.

The line CD is the diameter of a circle where C and D have coordinates (-3,4) and (9,-12) respectively.

Find the equation of the circle, giving your answer in the form

 $x^2 + y^2 + ax + by + c = 0$

Skill involved: 496f: Plot the graph of a circle not centred at the origin.

Skill involved: 496g: Appreciate that a point on the circumference of a circle, not centred at the origin, satisfies its equation.

Determine whether the point (-1,7) is inside the circle, on the circle, or outside the circle with equation

 $(x-1)^2 + (y-2)^2 = 30$

Skill involved: 496h: Determine the intercepts of circle given its equation.

The circle C has the equation

Find the exact *y* coordinates of the points where the circle *C* intersects the *y*-axis.

 $y = \dots$

or *y* =

Skill involved: 496i: Determine a constant in the equation of a circle given a point on the circumference.

Circle C_1 has equation $x^2 + y^2 - 4x - gy - 56 = 0$

Circle C_2 has equation $(x - 4)^2 + (y + 4)^2 = 40$

The centre of C_2 lies on the circumference of C_1

Find the value of a. where a is a positive constant.

Skill involved: 496j: Determine the equation of a circle using the endpoints of the diameter.

The line *AB* is the diameter of a circle where *A* and *B* have coordinates (3,12) and (19,24) respectively.

Find the equation of the circle, giving your answer in the form

 $x^2 + y^2 + ax + by + c = 0$

Skill involved: 496k: Complete the square to determine the centre and radius of a circle.

A circle has equation

$$x^2 + y^2 - 2y - 120 = 0$$

Find the centre and radius of the circle

Skill involved: 496I: Complete the square to determine the centre and radius of a circle, where the equation involves algebraic constants.

A circle C has equation

$$x^2 + y^2 + 2kx - 4ky = -20$$

where k is a constant.

By considering the radius of C, state the range of possible values for k.

Skill involved: 496m: Determine the equation of a circle using simple reasoning to establish the centre or radius of the circle.

The diagram shows a circle with centre C.

The circle intersects the x-axis at (-2,0) and (0,-8)The circle touches the y-axis at (-32,0)

Work out the equation of the circle.

6.3) Intersections of straight lines and circles

Notes

Skill involved: 496u: Determine whether a straight line cuts or is tangent to a circle.

A circle C has equation $(x-4)^2 + (y-3)^2 = 20$

Given that $y = -\frac{1}{2}x + k$, where k is a constant does not meet C, find the range of values for k.

.....

The line with equation y = 5x + 2 meets the circle with equation $x^2 + kx + y^2 = 6$ at exactly one point. Find the two possible values of k

The line with equation y = 4x - 3 does not intersect the circle with equation $x^2 + 2x + y^2 = k$. Find the range of possible values of k.

6.4) Use tangent and chord properties

Notes

Skill involved: 496n: Use the coordinates of the endpoint of chord of a circle and the radius to determine the circle's centre.

The diagram shows a circle, centre *C* with radius 13.

The circle passes through the points A(8,25) and B(8,1).

Work out the equation of the circle.

Skill involved: 4960: Determine the coordinate of a centre of a circle given its radius and the length of a tangent.

The diagram shows a circle C with centre S and radius T and the point T which lies on C.

The tangent to C at point T passes through the origin O and $OT = 12\sqrt{2}$

-

Given that the coordinates of S are (-10, m), find the exact value of m.

Skill involved: 496p: Determine the tangent to a circle centred at any point.

A circle has equation

$$x^2 + y^2 + 18x + 6y + 50 = 0$$

Find the equation of the tangent to the circle at the point (-11,3).

Give your answer in the form y = mx + c, where m and c are constants to be found.

......

T.126: 6E Qs 1-5, P.49 6.4 Qs 1-5

Skill involved: 496q: Determine the shortest distance between two circles with given equations.

Circle *A* has equation $x^2 + y^2 + 40x - 42y + 480 = 0$

Circle *B* has equation $x^2 + y^2 - 24x + 10y - 231 = 0$

Find the exact shortest distance between the two circles.

.....

Skill involved: 496r: Determine whether circles overlap or touch.

Circle *A* has equation $(x - 7)^{2} + (y + 3)^{2} = 32$

Circle *B* has equation $(x + 16)^2 + (y + 10)^2 = 338$

Select the correct statement.

Skill involved: 496s: Determine the length of a tangent from a point to a circle with given equation.

A circle C has radius P(-11,4) and touches the y-axis as the point (0,8), as shown in the figure.

A line through the point P(-11,4) is a tangent to the circle C at the point T.

Find the length of PT.

 $PT = \dots$ units

Skill involved: 496t: Determine the shortest distance from a chord of the circle of given length to the centre of the circle.

A circle has centre C and equation $(x-3)^2 + (y+5)^2 = 117$.

There are two points R and S which lie on the circle.

Given that the length of the chord RS is 18 units, find the length of the shortest distance from C to the chord RS.

Skill involved: 496v: Determine the equation of a tangent to a circle that is parallel to another given tangent.

Given the equation of a circle $(x + 15)^2 + (y + 12)^2 = 13$, and a tangent line with equation $y = \frac{3}{2}x + 4$.

This tangent meets the circle at point M.

The line with equation, $y = \frac{3}{2}x + k$, where $k \neq 4$ is also a tangent to the circle.

Find the value of k.

Skill involved: 496u: Determine whether a straight line cuts or is tangent to a circle.

A circle C has equation $(x-4)^2 + (y-3)^2 = 20$

Given that $y = -\frac{1}{2}x + k$, where k is a constant does not meet C, find the range of values for k.

.....

A circle C has equation

$$(x-4)^2 + (y+4)^2 = 10$$

The line *l* is a tangent to the circle and has gradient -3. Find two possible equations for *l*, giving your answers in the form y = mx + c.

The point *P* has coordinates (-8, -2) and the point *Q* has coordinates (2, -6). *M* is the midpoint of the line segment *PQ*.

a) Find an equation for *l*.

b) Given that the *y*-coordinate of *C* is -9:

i) show that the x-coordinate of C is -5.

ii) find an equation of the circle.

The line with equation 4x + y - 5 = 0 is a tangent to the circle with equation $(x - 3)^2 + (y - p)^2 = 2$. Find the two possible values of p

Your Turn

The line with equation 4x + y - 3 = 0 is a tangent to the circle with equation $(x - 2)^2 + (y - p)^2 = 5$. Find the two possible values of p

A circle has centre C(5,3), and passes through the point P(2,6). Find the equation of the tangent of the circle at the point P, giving your equation in the form ax + by + c = 0 where a, b, c are integers..

A circle passes through the points A(0,0) and B(2,8).

The centre of the circle has x value -2. Determine the equation of the circle.

Mark Scheme for Extension Question 2

(a)
$$(\chi + \psi)^{2} + (\psi - 7)^{2} = 13 \quad \text{and} \quad \chi = m\chi$$
(a)
$$(\chi^{2} + \psi n + 16) + (m^{2}\chi^{2} - (\psi m \chi + 4\pi)) = 13$$

$$(1 + m^{2}) \chi^{2} + (\psi - Nm)\chi + 5\chi = 0 \qquad (3t - ym) + 11$$

$$Touchey, s = "16^{2} - (4ac" (g - 14m))^{2} = 4\chi + 5\chi \times (1 + m^{2}) \qquad m(16^{2} - 4ac)^{2} + (2 - 7m)^{2} = 5\chi + 5\chi m^{2} \qquad m(16^{2} - 4ac)^{2} + (2 - 7m)^{2} = 5\chi + 5\chi m^{2} \qquad m(16^{2} - 4ac)^{2} + (2 - 7m)^{2} = 5\chi + 5\chi m^{2} \qquad m(16^{2} - 4ac)^{2} + (2 - 7m)^{2} = 5\chi + 5\chi m^{2} \qquad m(16^{2} - 4ac)^{2} + (16^{2} - 4ac)^{2} + (16^{2$$

Mark Scheme for Extension Question 3

(i)
$$PA = 2PB \Rightarrow (x-5)^2 + (y-16)^2 = 4((x+4)^2 + (y-4)^2)$$

 $\Rightarrow x^2 + y^2 - 10x - 32y + 281 = 4x^2 + 4y^2 + 32x - 32y + 128$
 $\Rightarrow 3x^2 + 3y^2 + 42x - 153 = 0$
 $\Rightarrow x^2 + y^2 + 14x - 51 = 0$
 $\Rightarrow (x+7)^2 - 49 + y^2 - 51 = 0$
 $\Rightarrow (x+7)^2 + y^2 = 100$

which is a circle centre (-7, 0) with radius 10.

(ii)
$$QC = k \times QD \Rightarrow (x-a)^2 + y^2 = k^2 (x-b)^2 + k^2 y^2$$

 $\Rightarrow x^2 (k^2 - 1) + y^2 (k^2 - 1) + x (2a - 2k^2b) + (k^2b^2 - a^2) = 0$

If this locus is the same as the locus of P, then the ratios of the coefficients must be the same.

$$\Rightarrow \frac{2a - 2k^2b}{k^2 - 1} = 14 \text{ and } \frac{k^2b^2 - a^2}{k^2 - 1} = -51.$$

Notice that you **cannot** conclude that $k^2 - 1 = 1$.

$$\Rightarrow k^{2} = \frac{a+7}{b+7} \text{ and } k^{2} = \frac{a^{2}+51}{b^{2}+51}$$

$$\Rightarrow \frac{a+7}{b+7} = \frac{a^{2}+51}{b^{2}+51}$$

$$\Rightarrow (a+7) (b^{2}+51) = (b+7) (a^{2}+51)$$

$$\Rightarrow ab^{2} - a^{2}b = 7 (a^{2} - b^{2}) + 51 (b-a)$$

$$\Rightarrow ab (b-a) = 7 (a-b) (a+b) + 51 (b-a)$$

$$\Rightarrow ab = 51 - 7 (a+b) \text{ since } a \neq b \Rightarrow a-b \neq 0$$

$$\Rightarrow ab + 7 (a+b) = 51$$

$$\Rightarrow ab + 7 (a+b) + 49 = 51 + 49$$

$$\Rightarrow (a+7) (b+7) = 100$$

6.5) Circles and triangles

We'd say:

- The triangle inscribes the circle. (A shape inscribes another if it is inside and its boundaries touch but do not intersect the outer shape)
- The circle circumscribes the triangle.
- If the circumscribing shape is a circle, it is known as the **circumcircle** of the triangle.
- The centre of a circumcircle is known as the circumcentre.

If $\angle ABC = 90^{\circ}$ then:

• AC is the diameter of the circumcircle of triangle ABC.

Similarly if AC is the diameter of a circle:

- $\angle ABC = 90^{\circ}$ therefore AB is perpendicular to BC.
- $AB^2 + BC^2 = AC^2$

Given three points/a triangle we can find the centre of the circumcircle by:

- Finding the equation of the perpendicular bisectors of two different sides.
- Find the point of intersection of the two bisectors.

Notes

Skill involved: 496w: Determine the equation of a circle given the coordinates of 3 points.

The coordinates (-7,19), (1,15) and (-23,7) lie on the circle C.

Find the equation of C.

Past Paper Questions

9.	A circle with centre $A(3,-1)$ passes through the point $P(-9,8)$ and the point $Q(15,-10)$			Exams
	(a) Show that PQ is a diameter of the circle.	(2)	F	Formula BookletPast Papers
	(b) Find an equation for the circle.	(3)		 Practice Papers past paper Qs by topic
	A point R also lies on the circle. Given that the length of the chord PR is 20 units,			
	(c) find the length of the shortest distance from A to the chord PR. Give your answer as a surd in its simplest form.	(2)	Pa to	ast paper practice by opic. Both new and old
	(d) Find the size of angle ARQ, giving your answer to the nearest 0.1 of a degree.	(2)	sp fc	becification can be bund via this link on
			h	gsmaths.com
				(d) Example $\frac{1}{2}\sqrt{125} = 5\sqrt{5}$ $\frac{ -\sqrt{125}\rangle}{5} = 5\sqrt{5}$ $\frac{1}{2}\sqrt{125} = \frac{1}{2}\sqrt{5}$ $\frac{1}{2}\sqrt{125} = \frac{1}{2}\sqrt{5}$ $\frac{1}{2}\sqrt{125} = \frac{1}{2}\sqrt{125}$ $\frac{1}{2}\sqrt{125} = \frac{1}{2}\sqrt{125}$ $\frac{1}{2}\sqrt{125} = \frac{1}{2}\sqrt{125}$
				(b) Uses Prythagoras in a correct methy either the radius or diameter of th $(x - 3)^2 + (y + 1)^2 = 225$ ((c) Present function and the formula in the f
				(a) $PQ = \sqrt{(-9-15)^2 + (810)^2} \left\{ = \sqrt{900} = 30 \right\}$ Alt 2 and either • $AP = \sqrt{(39)^2 + (-1-8)^2} \left\{ = \sqrt{225} = 1 \right\}$ • $AQ = \sqrt{(3-15)^2 + (-110)^2} \left\{ = \sqrt{225} + (3-2)^2 + ($
				(a) $\frac{m_{P_{2}} = -\frac{10 - 2}{4} = -\frac{3}{4} \Rightarrow PQ: y = -\frac{3}{4} = \frac{1}{2} \Rightarrow PQ: y = -\frac{3}{4} = \frac{1}{4} - \frac{3}{4}$ Aft 1 $\frac{PQ: y = -\frac{3}{4} + \frac{3}{4} = 50 = 3 \Rightarrow y = -\frac{3}{4}$ so PQ is the clamater of the ci
				9(a) E.g. midpoint $PQ = \left(\frac{-9+15}{2}, \frac{8-10}{2}\right)$ = $(3, -1)$, which is the contrope

Summary of Key Points

- **3** The equation of a circle with centre (0, 0) and radius r is $x^2 + y^2 = r^2$.
- 4 The equation of the circle with centre (a, b) and radius r is $(x a)^2 + (y b)^2 = r^2$.
- **5** The equation of a circle can be given in the form: $x^2 + y^2 + 2fx + 2gy + c = 0$

radius

cent of circle

chor

perpendicular

bisector

tangent