

Year 12 Pure Mathematics P1 7 Algebraic Methods Booklet

Dr Frost Course

HGS Maths

Name:

Class:

Contents

7.2 Dividing Polynomials

7.3 The Factor Theorem

Extract from Formulae booklet Past Paper Practice Summary

Prior knowledge check

PR work from 7.1 on DFM: Use K201a, K201b, K201c, K201d and K201e

Notes
$\frac{35c+6}{3} = 5c+2, why?$ think multiplication: $\frac{1x+2}{3} = 5c+2$ (menainder)
What about: $3x+7 \Rightarrow 3c+2$ 3 = 3c+2 $3 = 3c+6$ $r=1 \in remainder$.
Now $\frac{32+2}{3}$, $\frac{32+2}{3}$, $\frac{32+7}{3}$ = $\frac{32+2}{2}$ + $\frac{12}{3}$ dividend $\frac{32+2}{3}$ = $\frac{32+2}{2}$ + $\frac{12}{3}$ = $\frac{32+2}{2}$ + $\frac{12}{3}$ = $\frac{32+2}{2}$ + $\frac{12}{3}$ = $\frac{32}{2}$

Notes

Generally:

$$\frac{f(x)}{divisor(d)} = quotient(q) + \frac{remainder(r)}{divisor(d)}$$

497a: Determine a factor from algebraic division of a quadratic or cubic expression, given another factor (no zero coefficients).

Given that

$$\frac{3x^3 - 17x^2 + 8x + 48}{3x + 4} = Ax^2 + Bx + C$$

Use algebraic long division to work out the values of the constants $A, \ B,$ and C.

 $Ax^2 + Bx + C = \emptyset$

 $f(x) = 4x^4 - 17x^2 + 4$ Divide f(x) by (2x + 1), giving your answer in the form $f(x) = (2x + 1)(ax^3 + bx^2 + cx + d)$.

Exercise 7B

 Write each polynomial in the form (x ± p)(ax² a x³ + 6x² + 8x + 3 by (x + 1) c x³ - x² + x + 14 by (x + 2) e x³ - 8x² + 13x + 10 by (x - 5) 	+ $bx + c$) by dividing: b $x^3 + 10x^2 + 25x + 4$ by $(x + 4)$ d $x^3 + x^2 - 7x - 15$ by $(x - 3)$ f $x^3 - 5x^2 - 6x - 56$ by $(x - 7)$
2 Write each polynomial in the form $(x \pm p)(ax^2)$ a $6x^3 + 27x^2 + 14x + 8$ by $(x + 4)$ c $2x^3 + 4x^2 - 9x - 9$ by $(x + 3)$ e $-5x^3 - 27x^2 + 23x + 30$ by $(x + 6)$	+ $bx + c$) by dividing: b $4x^3 + 9x^2 - 3x - 10$ by $(x + 2)$ d $2x^3 - 15x^2 + 14x + 24$ by $(x - 6)$ f $-4x^3 + 9x^2 - 3x + 2$ by $(x - 2)$
3 Divide: a $x^4 + 5x^3 + 2x^2 - 7x + 2$ by $(x + 2)$ c $-3x^4 + 9x^3 - 10x^2 + x + 14$ by $(x - 2)$	b $4x^4 + 14x^3 + 3x^2 - 14x - 15$ by $(x + 3)$ d $-5x^5 + 7x^4 + 2x^3 - 7x^2 + 10x - 7$ by $(x - 1)$
4 Divide: a $3x^4 + 8x^3 - 11x^2 + 2x + 8$ by $(3x + 2)$ c $4x^4 - 6x^3 + 10x^2 - 11x - 6$ by $(2x - 3)$ e $6x^5 - 8x^4 + 11x^3 + 9x^2 - 25x + 7$ by $(3x - 1)$ g $25x^4 + 75x^3 + 6x^2 - 28x - 6$ by $(5x + 3)$	b $4x^4 - 3x^3 + 11x^2 - x - 1$ by $(4x + 1)$ d $6x^5 + 13x^4 - 4x^3 - 9x^2 + 21x + 18$ by $(2x + 3)$ f $8x^5 - 26x^4 + 11x^3 + 22x^2 - 40x + 25$ by $(2x - 5)$ h $21x^5 + 29x^4 - 10x^3 + 42x - 12$ by $(7x - 2)$
5 Divide: a $x^3 + x + 10$ by $(x + 2)$ c $-3x^3 + 50x - 8$ by $(x - 4)$	b $2x^3 - 17x + 3$ by $(x + 3)$ Hint Include $0x^2$ when you write out $f(x)$.
6 Divide: a $x^3 + x^2 - 36$ by $(x - 3)$ c $-3x^3 + 11x^2 - 20$ by $(x - 2)$	b $2x^3 + 9x^2 + 25$ by $(x + 5)$

Practice Book

- 1 Write each polynomial in the form $(x \pm p)(ax^2 + bx + c)$ by dividing:
 - **a** $2x^3 5x^2 + 8x 5$ by (x 1)
 - **b** $3x^3 + 8x^2 + 3x 2$ by (x + 2)
 - c $2x^3 + x^2 17x 12$ by (x 3)
 - **d** $4x^3 + 13x^2 11x + 4$ by (x + 4)
- 2 Divide:
 - **a** $3x^4 + 8x^3 x^2 13x 6$ by (x + 2)**b** $4x^4 - 8x^3 + x^2 - x - 2$ by (2x + 1)
 - c $9x^4 3x^3 17x^2 + 13x 2$ by (3x 2)
 - **d** $4x^4 12x^3 5x^2 + 15x + 9$ by (2x 3)

Hint You can use long division to divide a polynomial by $(x \pm p)$, where p is a constant. For example: $\frac{2x^2}{x-1)2x^3-5x^2+8x-5}$ and so on

Hint The answer you obtain following the division is called the **quotient**.

Find the remainder when $2x^3 - 5x^2 - 16x + 10$ is divided by (x - 4).

Divide $8x^3 - 1$ by (2x - 1).

$\begin{cases} f(x) = 12x^3 - 4x^2 - 61x + 60\\ \text{Show that } (2x - 3) \text{ is a factor of } f(x) \text{ and hence find all the real roots of the equation } f(x) = 0 \end{cases}$

		rks)		OOK rks) rks)	rks) rks)	rks) rks)	
olynomial in part a as - 4 before dividing.	remainder, then the $h(x \pm p)$ is not a factor. can be written as (x + c) + r where r is the). (2 ma	(2 ma (4 ma	(2 ma onstants (2 ma (2 ma	(2 ma are constants. (4 ma	$(ax^{2} + bx + c),$ (2 ma (4 ma (2 ma	
Hint Write the p $2x^3 + 6x^2 + 0x - 2x^3 + 6x^2 + 0x - 2x^3 + 6x^2 + 0x - 2x^3 + 0x + 0$	Hint If there is a linear expression The polynomial of $(x \pm p)(ax^2 + bx)$ remainder.	is divided by $(5x - 2)$	+ 3). f(x) completely.	here a , b and c are co.	(x-2). - <i>r</i> where <i>a</i> , <i>b</i> , <i>c</i> and <i>r</i>	(x) in the form $(x - 1)$ (x) = 0.	
Divide: a $2x^3 + 6x^2 - 4$ by $(x + 1)$ b $3x^3 + 7x^2 + 18$ by $(x + 3)$ c $4x^3 - 11x - 10$ by $(x - 2)$ d $2x^3 + 7x^2 + 75$ by $(x + 5)$	Find the remainder when: a $x^3 + 3x^2 + 5x - 8$ is divided by $(x + 4)$ b $2x^3 - 5x^2 + 12x - 20$ is divided by $(x - 3)$ c $3x^3 + 2x^2 - 40x + 45$ is divided by $(x + 5)$	Find the remainder when $-15x^3 + 26x^2 - 13x + 5$	$f(x) = 6x^3 - 13x^2 - 13x + 30$ a Find the remainder when $f(x)$ is divided by (x) b Given that $(x - 2)$ is a factor of $f(x)$, factorise $f(x) = 2x^3 + 3x^2 - 4x + k$ where k is a constant.	Given that $(x + 3)$ is a factor of $f(x)$: a find the value of k b express $f(x)$ in the form $(x + 3)(ax^2 + bx + c)$ v c show that $f(x) = 0$ has exactly one real solution	$f(x) = 3x^3 + 10x^2 - 8x - 5$ a Find the remainder, r, when $f(x)$ is divided by b Express $f(x)$ in the form $(x - 2)(ax^2 + bx + c)$.	 f(x) = 10x³ - 29x² + 4x + 15 a Given that (x - 1) is a factor of f(x), express f where a, b and c are constants. b Hence factorise f(x) completely. c Write down all the solutions to the equation fi 	
3	4	5	6 (E) 6		8 8	6	

_ - • _ .

$$x^3 + x^2 - 4x - 4 = (x - 2)(x^2 + 3x + 2)$$

We can see that (x - 2) is a factor of $x^3 + x^2 - 4x - 4$. What would happen if x is 2?

2-2=0 so the RHS, and hence LHS would be 0. The converse is also true: if we could find a value a such that the LHS is 0 when we substitute in a for x, then (x - a) would be a factor.

The Factor Theorem states that if f(x) is a polynomial then: • If f(p) = 0, then (x - p) is a factor of f(x). • Conversely, if (x - p) is a factor of f(x), then f(p) = 0.

Notes

498a: Determine whether a linear expression is a factor of a polynomial.

Given that

 $f(x) = x^3 - 7x - 6$

Select which of the following are factors of f(x)

 $\bigcirc (x+5)$

 $\bigcirc (x-5)$

 \bigcirc both

 \bigcirc neither

498c: Factorise a cubic when one of the factors is known.

Given that (2x-1) is a factor, factorise $f(x)=4x^3-3x+1.$

498d: Factorise a cubic expression using the factor theorem, where a factor is not known.

Factorise $f\left(x
ight)=2x^{3}+7x^{2}-3x-18.$

498f: Use the factor theorem to find a unknown coefficient.

 $f\left(x
ight)=4x^{3}+12x^{2}-19x+a$ where a is a constant

Given that (2x-3) is a factor of f(x), find the value of a.

498g: Use the factor theorem to find two unknown coefficients.

Given that (x+4) and (x+3) are factors of $f(x)=x^3+ax^2-2x+b$, determine the values of the constants a and b.

500a: Solve cubic equations using the factor theorem, given one of the roots.

Given that

x = -6

is a solution to the equation

 $2x^3 - x^2 - 58x + 120 = 0$

find all the solutions to the equation.

- a) Fully factorise $2x^3 + x^2 18x 9$
- b) Hence sketch the graph of $y = 2x^3 + x^2 18x 9$

Use the factor theorem to show that: a $(x - 1)$ is a factor of $4x^3 - 3x^2 - 1$. b $(x + 3)$ is a factor of $4x^3 - 3x^2 - 5x + 8$. 2 Show that $(x - 1)$ is a factor of $x^3 + 5x^2 - 12$ and hence factorise the expression completely. Show that $(x - 1)$ is a factor of $x^3 + 3x^2 - 3x - 33x - 33$ and hence factorise the expression completely. Show that $(x - 1)$ is a factor of $x^3 + 3x^2 - 3x^2 - 33x - 35$ and hence factorise the expression completely. Show that $(x - 2)$ is a factor of $x^3 + 3x^2 - 10x^2 + 19x^2 - 3x - 2 $ b $y^2 + x^2 - 4x - 4$ in the expression completely. F Fully factorise the right-hand side of each equation. F Fully factorise the right-hand side of each equation. F Fully factorise the right of $x^2 - 3x^2 - 3x^2 - 3x^2 - 3x^2 + 3x^2 + 3x^2 + 3x^2 + 3x^2 + 3x^2 + 3x^2 - 3x^2 - 3x^2 + 3x^2 - 3x^2 + 3x^2 - 3x^2 + 3x^2 - 3x^2 - 3x^2 + 3x^2 - 3x^2 + 3x^$	_															
Use the factor theorem to show that: a $(x - 1)$ is a factor of $4x^3 - 3x^2 - 1$ b $(x + 3)$ is a factor of $4x^3 - 3x^2 - 1$ b $(x + 3)$ is a factor of $4x^3 - 3x^2 - 1$ c $(x - 4)$ is a factor of $x^3 + 3x^2 - 33x - 35$ and hence factorise the expression that $(x - 1)$ is a factor of $x^3 + 3x^2 - 33x - 35$ and hence factorise the expression tart $(x - 5)$ is a factor of $x^3 + 3x^2 - 33x - 35$ and hence factorise the expression tart $(x - 5)$ is a factor of $x^3 + 3x^2 - 33x - 35$ and hence factorise the expression completely. 5 Show that $(x - 2)$ is a factor of $x^3 + 3x^2 - 18x + 8$ and hence factorise the expression completely. 5 Show that $(x - 2)$ is a factor of $x^3 + 3x^2 - 18x + 8$ and hence factorise the expression completely. 6 Each of these expressions has a factor $(x \pm p)$. Find a value of p and hence 1 expression completely. 7 F Fully factorise the right-hand side of each equation. 1 Fully factorise the right-hand side of each equation. 1 Exclusing graph of each equation. 1 Exclusing the values of $p = 2x^3 + 3x^2 - 12x^2 + 3x + 15$ find the value of a . 1 Fully factorise the right-hand side of $x^2 - bx^2 + 18x^2 + 3x - 15$ 2 $x^3 - 3x^2 - 12x^2 - 5x - 3x - 7$, find the values of b . 3 $y = 2x^3 + 5x^2 - 4x - 3$ b $y = 2x^3 - 12x^2 - 5x - 3x - 7$, find the values of b . b Factorise the factor theorem to $5x^3 - 9x^2 + 2x + a$, find the value of b . 5 Given that $(x - 1)$ and $(x + 1)$ are factors of $gx^3 + hx^2 - 12x^2 - 7x + 30$ 6 Given that $(x - 1)$ and $(x + 1)$ are factors of $gx^3 + hx^2 - 12x^2 - 5x - 7$, find the values of b and a . 6 Given that $(x - 1)$ and $(x + 1)$ are factor so of $gx^3 + hx^2 - 12x^2 - 5x - 7$. 7 Factorise f(x) completely. 6 Given that $(x - 1)$ and $(x - 1)$ are factors of $gx^3 + hx^2 - 14x + 24$, find the values of b and a . 6 (Fix) = $4x^3 - 1x^2 - 5x^2 - 5x$	$x^4 - 45x^2 - 6x - 18$	pression completely.	pression completely.	pression completely.	pression completely.	actorise the $-4x^2 - 11x + 30$	$3x^3 + 8x^2 + 3x - 2$			olem-solving e the factor theorem	form simultaneous uations.	alues of g and h .	(2 marks) (4 marks)	(2 marks) (4 marks) (1 mark)	(2 marks) (5 marks)	
	 Use the factor theorem to show that: (x - 1) is a factor of 4x³ - 3x² - 1 (x - 4) is a factor of -3x³ + 13x² - 6x + 8. 	2 Show that $(x - 1)$ is a factor of $x^3 + 6x^2 + 5x - 12$ and hence factorise the exp	3 Show that $(x + 1)$ is a factor of $x^3 + 3x^2 - 33x - 35$ and hence factorise the exp	4 Show that $(x - 5)$ is a factor of $x^3 - 7x^2 + 2x + 40$ and hence factorise the exp	5 Show that $(x - 2)$ is a factor of $2x^3 + 3x^2 - 18x + 8$ and hence factorise the exp	 6 Each of these expressions has a factor (x ± p). Find a value of p and hence ft expression completely. a x³ - 10x² + 19x + 30 b x³ + x² - 4x - 4 c x³ - 	7 i Fully factorise the right-hand side of each equation. ii Sketch the graph of each equation. a $y = 2x^3 + 5x^2 - 4x - 3$ b $y = 2x^3 - 17x^2 + 38x - 15$ c $y = d$ $y = 6x^3 + 11x^2 - 3x - 2$ e $y = 4x^3 - 12x^2 - 7x + 30$	8 Given that $(x - 1)$ is a factor of $5x^3 - 9x^2 + 2x + a$, find the value of a.	9 Given that $(x + 3)$ is a factor of $6x^3 - bx^2 + 18$, find the value of b.	0 Given that $(x - 1)$ and $(x + 1)$ are factors of $px^3 + qx^2 - 3x - 7$, find the values of p and q .	1 Given that $(x + 1)$ and $(x - 2)$ are factors of $cx^3 + dx^2 - 9x - 10$, the find the values of <i>c</i> and <i>d</i> .	2 Given that $(x + 2)$ and $(x - 3)$ are factors of $gx^3 + hx^2 - 14x + 24$, find the va	 3 f(x) = 3x³ - 12x² + 6x - 24 a Use the factor theorem to show that (x - 4) is a factor of f(x). b Hence, show that 4 is the only real root of the equation f(x) = 0. 	 4 f(x) = 4x³ + 4x² - 11x - 6 a Use the factor theorem to show that (x + 2) is a factor of f(x). b Factorise f(x) completely. c Write down all the solutions of the equation 4x³ + 4x² - 11x - 6 = 0. 	5 a Show that $(x - 2)$ is a factor of $9x^4 - 18x^3 - x^2 + 2x$. b Hence, find four real solutions to the equation $9x^4 - 18x^3 - x^2 + 2x = 0$.	thallenge $f(x) = 2x^4 - 5x^3 - 42x^2 - 9x + 54$ a Show that $f(1) = 0$ and $f(-3) = 0$. b Hence, solve $f(x) = 0$.

Page 31

		Flactice DOOK			
Hint The factor theorem states that if $f(x)$ is a polynomial, then: • if $f(p) = 0$ then $(x - p)$ is a factor of $f(x)$ • if $(x - p)$ is a factor of $f(x)$ then $f(p) = 0$ Hint When you have used the factor theorem to show the linear expression is a factor, you can use long division to find the quadratic factor. Factorise the quadratic factor to write the polynomial as a product of three linear factors.	Hint Try values of <i>p</i> in each expression for $f(x)$, e.g. $p = -1, 1, 2, 3,$ until you find $f(p) = 0$. Then use the factor theorem to deduce that $(x - p)$ is a factor of $f(x)$.	Hint To sketch the graph, you need to identify the points where the curve crosses the axes. Set $x = 0$ to find the y-intercept and $y = 0$ to find the x-intercepts. The general shapes of cubic graphs are: The general shapes of cubic graphs are: If the coefficient of x^3 if the coefficient of x^3 is positive is negative	colutions to $f(x) = 0$. (5 marks) a factor of $f(x)$. (2 marks) $m f(x) = (x + 4)(nx + a)^2$, where <i>n</i> and <i>a</i> are	(4 marks) ly. (5 marks)	s. (2 marks) 9x - 20, indicating the values where the curve 9x - 20, indicating the values where the curve (4 marks) (4 marks) (5 marks) its of the equation $p(x) = 0$. (2 marks)
 Use the factor theorem to show that: a (x + 1) is a factor of 2x³ + 7x² - 5 b (x + 2) is a factor of x³ + 4x² + 3x - 2 c (x - 3) is a factor of 2x³ - 3x² - 7x - 6 d (x - 4) is a factor of x⁴ - 3x³ - 15x - 4 Use the factor theorem to show that the linear expression is a factor of the polynomial f(x) and factorise f(x) completely: a (x - 2), 2x³ + 17x² + 38x + 15 c (x - 1), 6x³ - x² - 11x + 6 d (x + 4), 15x³ + 61x² - 2x - 24 	 Fully factorise each expression: a x³ + 2x² - 21x + 18 b 2x³ + 13x² + 13x - 10 c 3x³ + 2x² - 41x - 60 	 For each of the following polynomials, i fully factorise each polynomial f(x). ii Hence sketch the graph of y = f(x). a 2x³ - 11x² + 5x + 18 b 2x³ - 3x² - 39x + 20 c 6x³ + 37x² + 50x - 21 	 f(x) = 6x³ - 17x² - 15x + 36 Given that (x - 3) is a factor of f(x), find all the st f(x) = 9x³ + 24x² - 44x + 16 a Use the factor theorem to show that (x + 4) is a b Hence show that f(x) can be written in the form 	integers to be found. 7 $f(x) = 2x^3 - 3x^2 - 5x + 6$. Factorise $f(x)$ completely	 g(x) = x³ + 2x² - 19x + k Given that (x + 1) is a factor of g(x), a show that k = -20 b express g(x) as a product of three linear factors c Sketch the curve with equation y = x³ + 2x² - 15 crosses the x-axis and the y-axis. 9 p(x) = 25x³ + 55x² - 56x + 12 a Use the factor theorem to show that (x + 3) is a b Fully factorise p(x). c Hence show that there are exactly two real root
1	ന	4	e e e	۲ ا	

Practice Book

Past Paper Questions

Summary of Key Points

- 1 When simplifying an algebraic fraction, factorise the numerator and denominator where possible and then cancel common factors.
- **2** You can use long division to divide a polynomial by $(x \pm p)$, where p is a constant.
- **3** The **factor theorem** states that if f(*x*) is a polynomial then:
 - If f(p) = 0, then (x p) is a factor of f(x)
 - If (x p) is a factor of f(x), then f(p) = 0

Mixed Exercise										
			(2 marks) re the values (3 marks)	(2 marks) ues <i>p</i> and <i>q</i> (4 marks)	(6 marks)	(4 marks)	(6 marks) (3 marks)	(6 marks) (3 marks)	(6 marks) (2 marks)	
1 Simplify these fractions as far as possible: a $\frac{3x^4 - 21x}{3x}$ b $\frac{x^2 - 2x - 24}{x^2 - 7x + 6}$ c $\frac{2x^2 + 7x - 4}{2x^2 + 9x + 4}$	2 Divide $3x^3 + 12x^2 + 5x + 20$ by $(x + 4)$.	3 Simplify $\frac{2x^2 + 5x + 3}{x + 1}$	 4 a Show that (x - 3) is a factor of 2x³ - 2x² - 17x + 15. b Hence express 2x³ - 2x² - 17x + 15 in the form (x - 3)(Ax² + Bx + C), when A, B and C are to be found. 	 5 a Show that (x - 2) is a factor of x³ + 4x² - 3x - 18. b Hence express x³ + 4x² - 3x - 18 in the form (x - 2)(px + q)², where the valuare to be found. 	(E) 6 Factorise completely $2x^3 + 3x^2 - 18x + 8$.	(E/P) 7 Find the value of k if $(x - 2)$ is a factor of $x^3 - 3x^2 + kx - 10$.	 E(P) 8 f(x) = 2x² + px + q. Given that f(-3) = 0, and f(4) = 21: a find the value of p and q b factorise f(x). 	 P h(x) = x³ + 4x² + rx + s. Given h(-1) = 0, and h(2) = 30: a find the values of r and s b factorise h(x). 	 10 g(x) = 2x³ + 9x² - 6x - 5. a Factorise g(x). b Solve g(x) = 0. 	

Mixed Exercise

 a Show that (x - 2) is a factor of f(x) = x³ + x² - 5x - 2. b Hence, or otherwise, find the exact solutions of the equation f(x) = 0. 	(2 marks) (4 marks)
(E) 12 Given that -1 is a root of the equation $2x^3 - 5x^2 - 4x + 3$, find the two positive roots.	(4 marks)
 f(x) = x³ - 2x² - 19x + 20 a Show that (x + 4) is a factor of f(x). b Hence, or otherwise, find all the solutions to the equation x³ - 2x² - 19x + 20 = 0. 	(3 marks) (4 marks)
 If (x) = 6x³ + 17x² - 5x - 6 a Show that f(x) = (3x - 2)(ax² + bx + c), where a, b and c are constants to be found. b Hence factorise f(x) completely. c Write down all the real roots of the equation f(x) = 0. 	(2 marks) (4 marks) (2 marks)

Problem Solving Set B							
(3 marks) (3 marks) (2 marks) (2 marks)	(3 marks) (5 marks) (2 marks) (3 marks) (3 marks)	(2 marks)					
Bronze $f(x) = x^3 - x^2 + px + q$ where <i>p</i> and <i>q</i> are integers. Given that $(x + 1)$ is a factor of $f(x)$, a show that $q - p = 2$. Given that $(x + 3)$ is also a factor of $f(x)$, b show that $q - 3p = 36$. c Hence find the value of <i>p</i> and the corresponding value of <i>q</i> . d Factorise $f(x)$ completely.	Filter $f(x) = 2x^3 - x^2 + px + q$ where <i>p</i> and <i>q</i> are integers. Given that $(x + 2)$ is a factor of $f(x)$, a show that $q - 2p - 20 = 0$. Given that $(x - 3)$ is also a factor of $f(x)$, b find the value of <i>p</i> and the corresponding value of <i>q</i> . c Factorise $f(x)$ completely. Cold $f(x) = x^3 + (p + 4)x^2 + 8x + q$ where <i>p</i> and <i>q</i> are integers. Given that $(x - 2)$ is a factor of $f(x)$, and that $p > 0$, a show that $4p + q + 40 = 0$. Given that $(x + p)$ is also a factor of $f(x)$, and that $p > 0$, b show that $4p^2 - 8p + q = 0$.	d Factorise f(x) completely.					