AS Further Mathematics 8FM0 Specimen Paper - Further Pure Mathematics 2 Mark Scheme

Question							Sc	heme	Marks	AOs
1(i)(a)	× ₁₃	1	3	4	9	10	12			
	1	1	3	4	9	10	12			
	3	3	9	12	1	4	10		M1	1.1b
	4	4	12	3	10	1	9	One non-identity row or columns correct		
	9	9	1	10	3	12	4			
	10	10	4	1	12	9	3			
	12	12	10	9	4	3	1			
	At l	east f	our r	ows c	or fou	ır col	umns	correct	A1	1.1b
	All	corre	ct						A1	1.1b
									(3)	
(i)(b)	{1,3,9} (This is the only such subgroup)							B1	1.1b	
									(1)	
(i)(c)	The subg	orde: group	r of tl of oi	he gro rder 4	oup is by I	s 6, a: Lagra	nd 4 c nge's	loes not divide 6, so there can be no Theorem.	B1	2.4
									(1)	
(ii)	Multiplicative identity is 1, but e.g. $1 \times 3 \equiv_{15} 3$, $3 \times 3 \equiv_{15} 9$, $6 \times 3 \equiv_{15} 3$,								M1	1.1b
	$9 \times 3 \equiv_{15} 12$ and $12 \times 3 \equiv_{15} 6$								A1	1.1b
	So 3	3 has 1 <u>p</u> .	<u>no (</u>]	left) i	nvers	<u>se</u> ele	ment	and hence $(\{1,3,6,9,12\},\times_{15})$ is <u>not a</u>	A1	2.3
									(3)	
				(8 n	narks)					
Notes:										
(i)(a)M1: At least one non-identity row or column must be correct										

A1: Allow for four correct rows or four correct columns (including a border).

A1: Fully correct.

(i)(b)

B1: Correct subgroup found.

(i)(c)

B1: States both that the order of the group is 6 and 4 does not divide 6, and refers to Lagrange's Theorem (either by name or by quoting the result "the order of a subgroup divides the order of the group" or similar).

(ii)

M1: Identifies 1 as the identity and shows that there is an element with no inverse. E.g. may write out a partial group table and state no 1 in second row. Must give evidence -- just `no inverses' is M0.

- A1: Correct multiples of 3 (all checked) or their value or correct row in table if drawn.
- A1: Concludes <u>not a group</u> with reason <u>inverse axiom fails</u>. Accept `no inverses' as reason providing evidence has been given to award the M.

Question	Scheme	Marks	AOs
2(a)	$x_2 = 5 \times 2 - 1 = 9$ and $y_2 = 3 \times 2 + 1 = 7$, so $x_3 = 5 \times 9 - 7$	M1	11b
	Hence $x_3 = 38$	A1	1.1b
		(2)	
(b)	(i) $\begin{vmatrix} 5-\lambda & -1\\ 3 & 1-\lambda \end{vmatrix} = 0 \Rightarrow (5-\lambda)(1-\lambda) - 3 \times -1 = 0$ $\Rightarrow \lambda^2 - 6\lambda + 8 = 0 \Rightarrow ((\lambda - 2)(\lambda - 4) = 0 \Rightarrow)\lambda =$	M1	1.1b
	$\lambda = 2$ and $\lambda = 4$	A1	1.1b
	(ii) $\lambda = 2 \Rightarrow \begin{cases} 5x - y = 2x \\ 3x + y = 2y \end{cases} \Rightarrow 3x = y \text{ oe}$ or $\lambda = 4 \Rightarrow \begin{cases} 5x - y = 4x \\ 3x + y = 4y \end{cases} \Rightarrow x = y \text{ oe}$	M1	1.1b
	Either $\lambda = 2 \Longrightarrow \mathbf{v} = k \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ or $\lambda = 4 \Longrightarrow \mathbf{v} = k \begin{pmatrix} 1 \\ 1 \end{pmatrix}$	A1	1.1b
	Both $\lambda = 2 \Rightarrow \mathbf{v} = k \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ and $\lambda = 4 \Rightarrow \mathbf{v} = k \begin{pmatrix} 1 \\ 1 \end{pmatrix}$	A1	1.1b
		(5)	
(c)	$\mathbf{D} = \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix}$ ft their eigenvalues either way round, OR $\mathbf{P} = \begin{pmatrix} 1 & 1 \\ 3 & 1 \end{pmatrix}$ ft their eigenvectors as columns in any order.	B1ft	1.1b
	Deduces BOTH $\mathbf{D} = \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix}$ AND $\mathbf{P} = \begin{pmatrix} 1 & 1 \\ 3 & 1 \end{pmatrix}$ ft their eigenvalues either way round and their eigenvectors (any multiples) as columns <i>in</i> <i>the correct order corresponding to their eigenvalues</i> .	B1ft	2.2a
		(2)	
(d)	$ \begin{pmatrix} u_{n+1} \\ v_{n+1} \end{pmatrix} = \mathbf{P}^{-1} \begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \mathbf{P}^{-1} \mathbf{A} \begin{pmatrix} x_n \\ y_n \end{pmatrix} \text{ OR } \mathbf{D} \begin{pmatrix} u_n \\ v_n \end{pmatrix} = \mathbf{P}^{-1} \mathbf{A} \mathbf{P} \cdot \mathbf{P}^{-1} \begin{pmatrix} x_n \\ y_n \end{pmatrix} $	M1	1.1b
	$\dots = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}\mathbf{P}^{-1}\begin{pmatrix}x_n\\y_n\end{pmatrix} = \mathbf{D}\begin{pmatrix}u_n\\v_n\end{pmatrix}^* \mathbf{OR} \dots = \mathbf{P}^{-1}\mathbf{A}\begin{pmatrix}x_n\\y_n\end{pmatrix} = \mathbf{P}^{-1}\begin{pmatrix}x_{n+1}\\y_{n+1}\end{pmatrix} = \begin{pmatrix}u_{n+1}\\v_{n+1}\end{pmatrix}^*$	A1*	2.1
		(2)	

Specimen Paper - Further Pure Mathematics 2 Mark Scheme

Question	Scheme	Marks	AOs		
(e)	$\begin{pmatrix} u_{n+1} \\ v_{n+1} \end{pmatrix} = \mathbf{D} \begin{pmatrix} u_n \\ v_n \end{pmatrix} \Longrightarrow u_{n+1} = 2u_n \text{ and } v_{n+1} = 4v_n$ $\Longrightarrow u_n = u_1 \times 2^{n-1 \text{ or } n} \text{ and } v_n = v_1 \times 4^{n-1 \text{ or } n}$		3.1a		
	$u_n = u_1 \times 2^{n-1}$ and $v_n = v_1 \times 4^{n-1}$ f.t. their eigenvalues in place of 2 and 4.	Alft	1.1b		
	So $\begin{pmatrix} x_n \\ y_n \end{pmatrix} = \mathbf{P} \begin{pmatrix} u_n \\ v_n \end{pmatrix} = \begin{pmatrix} u_n + v_n \\ 3u_n + v_n \end{pmatrix} = \begin{pmatrix} u_1 \times 2^{n-1} + v_1 \times 4^{n-1} \\ 3u_1 \times 2^{n-1} + v_1 \times 4^{n-1} \end{pmatrix}$ OR $\begin{cases} u_n = -\frac{1}{2}x_n + \frac{1}{2}y_n \\ v_n = \frac{3}{2}x_n - \frac{1}{2}y_n \end{cases} \Rightarrow \begin{cases} x_n = u_n + v_n = u_1 \times 2^{n-1} + v_1 \times 4^{n-1} \\ y_n = 3u_n + v_n = 3u_1 \times 2^{n-1} + v_1 \times 4^{n-1} \end{cases}$	M1	2.1		
	$x_1 = 2$, $y_1 = 1 \Rightarrow u_1 = -\frac{1}{2}$ and $v_1 = \frac{5}{2}$ found using matrix multiplication or equations.	M1	1.1b		
	So $x_n = \left(-\frac{1}{2}\right)2^{n-1} + \left(\frac{5}{2}\right)4^{n-1}$ and $y_n = \left(-\frac{3}{2}\right)2^{n-1} + \left(\frac{5}{2}\right)4^{n-1}$ oe	A1	1.1b		
		(5)			
	(16 mar				
Notes:					

(a)

M1: Finds both x_2 and y_2 and attempts x_3 using them.

A1: Correct $x_3 = 38$

(b)(i)

M1: Forms the characteristic equation for A and attempts to solve (usual rules).

A1: Correct eigenvalues.

(b)(ii)

M1: Correct equations set up for at least one eigenvalue and attempt to solve.

A1: One correct eigenvector.

A1: Both correct.

(c)

- **B1ft**: Either gives **D** as the diagonal matrix with their eigenvalues (either way) on diagonal, or **P** as the matrix with their eigenvectors (any multiples) as columns.
- **B1ft:** Both **P** as the matrix with their eigenvectors (any multiples) as the columns AND **D** as the diagonal matrix with the corresponding eigenvalues on diagonal in the correct order to match the <u>columns of **P**</u>.

Specimen Paper - Further Pure Mathematics 2 Mark Scheme

Question 2 notes continued

(d)

M1: Changes from $\{u, v\}$ system to $\{x, y\}$ system and applies the recurrence relation to $\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix}$. If

working in reverse, for this mark both **D** and $\begin{pmatrix} u_n \\ v_n \end{pmatrix}$ must be replaced.

A1*: Correctly derives result by introducing \mathbf{PP}^{-1} before applying $\mathbf{P}^{-1}\mathbf{AP} = \mathbf{D}$ and using the transformation again. If working in reverse it is for completing the proof correctly.

- **(e)**
- M1: Uses their diagonal matrix to form two separate first order recurrence relations in one variable and attempts to solve each. Allow if the index is n instead of n-1.

A1ft: Correct form for each, $u_1 \times \lambda_1^{n-1}$ and $v_1 \times \lambda_2^{n-1}$ for their eigenvalues. May find the closed forms for

 u_n and v_n using $u_1 = -\frac{1}{2}$ and $v_1 = \frac{5}{2}$ here, but the A1 needs only the correct structure.

M1: Uses the matrix equation or solves simultaneous equations in the x_n and y_n sequences, with closed forms for u_n and v_n , to obtain forms for x_n and y_n .

M1: Uses initial terms to find the constants -- may be awarded before the previous method mark.

A1: Correct forms for both sequences, need not be simplified, but accept any equivalents such as

$$x_n = 5 \times 2^{2n-3} - 2^{n-2} = \frac{1}{8} 2^n (5 \times 2^n - 2)$$
 and $y_n = 5 \times 2^{2n-3} - 3 \times 2^{n-2} = \frac{1}{8} 2^n (5 \times 2^n - 6)$

Question	Scheme	Marks	AOs
3(a)	$\begin{array}{c c} Im \\ 25i \\ 25i \\ 0 \\ \hline \\ 0 \\ \hline \\ \hline \\ 0 \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ $	M1 A1	1.1b 1.1b
		(2)	
(b)	$y = \frac{25}{2}i$ where centre is $x + yi$	B1	2.2a
	Circle passes through O so $r^2 = \left(-\frac{25}{2}\left(2+\sqrt{3}\right)\right)^2 + \left(\frac{25}{2}\right)^2$ \newline OR passes through 25i so $r^2 = \left(-\frac{25}{2}\left(2+\sqrt{3}\right)\right)^2 + \left(25-\frac{25}{2}\right)^2$ ALT uses circle geometry to deduce angle OCX is $\frac{\pi}{12}$ or angle CXO is $11\pi/24$ and attempts to use in a correct triangle.	M1	3.1a
	$\Rightarrow r = \sqrt{25^2 \left(\frac{1}{4}(4 + 4\sqrt{3} + 3) + \frac{1}{4}\right)} = 25\sqrt{2}\sqrt{2} + \sqrt{3}$ ALT $r = \frac{12.5}{\sin\left(\frac{\pi}{12}\right)}$ or $r = \frac{25}{2}(2 + \sqrt{3}) + \frac{25/2}{\tan\left(\frac{11\pi}{2}\right)}$ oe	M1	1.1b
	$\Rightarrow r = \frac{25}{2} \left(\sqrt{6} + \sqrt{2} \right) \text{ or } r = \text{awrt48.296} (r = 48.29629131)$	A1	1.1b
		(4)	
(c)	Distance from centre of arc to first ball is $\sqrt{\left(0.5 - \left(-\frac{25}{2}\left(2 + \sqrt{3}\right)\right)\right)^2 + (23.25 - 12.5)^2}$	M1	3.1b
	$\left(=\sqrt{47.150^2+10.75^2}=\sqrt{2338.7448}\right)=48.3605$ (awrt 48.36)	A1	3.4
	So difference between distance to ball and radius of arc is $48.360548.2962=0.0642$	M1	1.1b
	0.064 < 0.1 (=twice radius) and so the balls will collide	A1	3.2a
		(4)	

(10 marks)
Question 3 notes:
(a)
M1: See scheme.
A1: A correct sketch as per scheme.
(b)
B1: Deduces the imaginary part of the centre is $\frac{25}{2}i$.
M1: Uses that the circle passes through O or 25i with Pythagoras to form an equation for r^2 with x and their y . Alternatively, may use circle geometry to find the one of the angles shown with attempt to use it.
M1: Proceeds to find r .
A1: Correct radius, either exact or awrt to 3 d.p.
(c)
M1: Realises the need to find the distance of the first ball from the centre of the circle, so applies Pythagoras to find this.
A1: Correct distance.
M1: Compares distance to radius of circle.
A1: Correct difference, accept (±) awrt 0.06, compared to twice the radius and conclusion that second ball will hit the first.

Specimen Paper - Further Pure Mathematics 2 Mark Scheme

Questio n	Scheme	Marks	AOs
4	First fact gives $a-b+c=11k$, $k \in \mathbb{Z}$ OR second fact gives $a+b+c=2m+1$, $m \in \mathbb{Z}$ OR third fact gives $(100a+10b+c \equiv 5 \pmod{9}) \Rightarrow (a+b+c \equiv 5 \pmod{9})$ or $a+b+c=5+9p$, some $p \in \mathbb{Z}$		1.1b
	Facts 1 and 2 give $a-b+c = 2(m-b)+1$ is odd (oe). Facts 1 and 3 give $2b = 5+9p-11k$ or $2(a+c) = 5+11k+9p$ where $k \in \{0,1\}, p \in \{0,1,2\}$ Facts 2 and 3 give $a+b+c = 5+18q$, $q \in \{0,1\}$	M1	3.1a
	Facts 1 and 2: must reach $a-b+c=11$ Facts 1 and 3: must reach $2b=12$ or 14 (both values needed) or $2(a+c)=14$ or 16 or 34 (all three needed). Facts 2 and 3: must reach $a+b+c=5$ or 23 (both values needed)	A1	2.2a
	Uses the remaining fact to find a value for b (or for $a + c$ using facts 1 and 3 initially).	M1	3.1a
	For $b = 6$ or for $a + c = 17$	A1	2.2a
	& Thus as $a + c = 17$ so a and c must be 8 and 9, so the possibilities are 968 or 869 and no others.	A1	2.1
		(6)	
		(6 n	narks)

Notes:

- M1: Uses any one of the facts to form an equation in a, b and c, e.g property of divisibility by 11, to form equation a-b+c=11k ($k \in \mathbb{Z}$) (or $k \in \{0,1\}$ if range of values considered here), OR second fact gives a+b+c=2k+1 (don't accept just a+b+c is odd for this mark), OR achieves $a+b+c \equiv 5 \pmod{9}$ oe from third fact (must reduce the coefficients modulo 9).
- M1: Uses a second property AND combines two properties together. E.g. fact 2 gives a+b+c=2m+1 ($m \in \mathbb{Z}$) oe, and combining with fact one we have a-b+c=a+b+c-2b is also odd, (or adds equations to deduce $2b = 2m+11k+1 \Rightarrow k$ odd). Alternatives include e.g. $a+b+c-5 \in \{0,9,18\}$ from fact three (since these are the only multiples of 9 possible for the ranges on a, b and c) and so a+b+c-5=0 or 18 (allow the M if the 0 case is missing).
- A1: Correctly combines two facts with consideration of the range of values to deduce a correct equation in just a, b and c. Possibilities are a-b+c=11 or a+b+c=5 or 23 oe. (Should have both values in the latter case unless a convincing reason why it is not 5 has been given.)
- M1: Uses the remaining property and attempts to solve for b. E.g. third fact gives $100a+10b+c \equiv 5 \pmod{9}$ and reduces modulo 9 to $a+b+c \equiv 5 \pmod{9}$ and combines with $a-b+c \equiv 11$ to deduce $2b \equiv 9p-6$ or so $b \equiv \dots$

Use of facts 1 and 3 initially will require some work of trial an elimination of possibilities here. The cases that cannot happen must be seen to be rejected.

- A1: Correct deduction that b = 6.
- A1: Completes the argument and deduces correctly that the only two possible values are 968 and 869.