AS Further Mathematics 8FMO

Specimen Paper - Further Pure Mathematics 2 Mark Scheme

AS Further Mathematics 8FM0

Specimen Paper - Further Pure Mathematics 2 Mark Scheme

Question	Scheme	Marks	AOs
2(a)	$x_{2}=5 \times 2-1=9$ and $y_{2}=3 \times 2+1=7$, so $x_{3}=5 \times 9-7$	M1	11b
	Hence $x_{3}=38$	A1	1.1 b
		(2)	
(b)	$\text { (i) } \begin{aligned} & \left\|\begin{array}{cc} 5-\lambda & -1 \\ 3 & 1-\lambda \end{array}\right\|=0 \Rightarrow(5-\lambda)(1-\lambda)-3 \times-1=0 \\ & \quad \Rightarrow \lambda^{2}-6 \lambda+8=0 \Rightarrow((\lambda-2)(\lambda-4)=0 \Rightarrow) \lambda=. . \end{aligned}$	M1	1.1b
	$\lambda=2$ and $\lambda=4$	A1	1.1b
	(ii) $\lambda=2 \Rightarrow\left\{\begin{array}{l}5 x-y=2 x \\ 3 x+y=2 y\end{array} \Rightarrow 3 x=y\right.$ oe or $\lambda=4 \Rightarrow\left\{\begin{array}{l}5 x-y=4 x \\ 3 x+y=4 y\end{array} \Rightarrow x=y\right.$ oe	M1	1.1b
	Either $\lambda=2 \Rightarrow \mathbf{v}=k\binom{1}{3}$ or $\lambda=4 \Rightarrow \mathbf{v}=k\binom{1}{1}$	A1	1.1b
	Both $\lambda=2 \Rightarrow \mathbf{v}=k\binom{1}{3}$ and $\lambda=4 \Rightarrow \mathbf{v}=k\binom{1}{1}$	A1	1.1b
		(5)	
(c)	$\mathbf{D}=\left(\begin{array}{ll}2 & 0 \\ 0 & 4\end{array}\right) \mathrm{ft}$ their eigenvalues either way round, OR $\mathbf{P}=\left(\begin{array}{ll}1 & 1 \\ 3 & 1\end{array}\right) \mathrm{ft}$ their eigenvectors as columns in any order.	B1ft	1.1b
	Deduces BOTH $\mathbf{D}=\left(\begin{array}{ll}2 & 0 \\ 0 & 4\end{array}\right)$ AND $\mathbf{P}=\left(\begin{array}{ll}1 & 1 \\ 3 & 1\end{array}\right) \mathrm{ft}$ their eigenvalues either way round and their eigenvectors (any multiples) as columns in the correct order corresponding to their eigenvalues.	B1ft	2.2a
		(2)	
(d)	$\binom{u_{n+1}}{v_{n+1}}=\mathbf{P}^{-1}\binom{x_{n+1}}{y_{n+1}}=\mathbf{P}^{-1} \mathbf{A}\binom{x_{n}}{y_{n}}$ OR $\mathbf{D}\binom{u_{n}}{v_{n}}=\mathbf{P}^{-1} \mathbf{A P} \cdot \mathbf{P}^{-1}\binom{x_{n}}{y_{n}}$	M1	1.1b
	$\ldots=\mathbf{P}^{-1} \mathbf{A P P} \mathbf{P}^{-1}\binom{x_{n}}{y_{n}}=\mathbf{D}\binom{u_{n}}{v_{n}} *$ OR $\ldots=\mathbf{P}^{-1} \mathbf{A}\binom{x_{n}}{y_{n}}=\mathbf{P}^{-1}\binom{x_{n+1}}{y_{n+1}}=\binom{u_{n+1}}{v_{n+1}} *$	A1*	2.1
		(2)	

AS Further Mathematics 8FM0

Specimen Paper - Further Pure Mathematics 2 Mark Scheme

Question	Scheme	Marks	AOs
(e)	$\begin{aligned} & \binom{u_{n+1}}{v_{n+1}}=\mathbf{D}\binom{u_{n}}{v_{n}} \Rightarrow u_{n+1}=2 u_{n} \text { and } v_{n+1}=4 v_{n} \\ & \Rightarrow u_{n}=u_{1} \times 2^{n-1 \text { or } n} \text { and } v_{n}=v_{1} \times 4^{n-1 \text { or } n} \end{aligned}$	M1	3.1a
	$u_{n}=u_{1} \times 2^{n-1}$ and $v_{n}=v_{1} \times 4^{n-1}$ f.t. their eigenvalues in place of 2 and 4 .	Alft	1.1b
	$\begin{aligned} & \text { So }\binom{x_{n}}{y_{n}}=\mathbf{P}\binom{u_{n}}{v_{n}}=\binom{u_{n}+v_{n}}{3 u_{n}+v_{n}}=\binom{u_{1} \times 2^{n-1}+v_{1} \times 4^{n-1}}{3 u_{1} \times 2^{n-1}+v_{1} \times 4^{n-1}} \\ & \text { OR }\left\{\begin{array} { l } { u _ { n } = - \frac { 1 } { 2 } x _ { n } + \frac { 1 } { 2 } y _ { n } } \\ { v _ { n } = \frac { 3 } { 2 } x _ { n } - \frac { 1 } { 2 } y _ { n } } \end{array} \Rightarrow \left\{\begin{array}{l} x_{n}=u_{n}+v_{n}=u_{1} \times 2^{n-1}+v_{1} \times 4^{n-1} \\ y_{n}=3 u_{n}+v_{n}=3 u_{1} \times 2^{n-1}+v_{1} \times 4^{n-1} \end{array}\right.\right. \end{aligned}$	M1	2.1
	$x_{1}=2, y_{1}=1 \Rightarrow u_{1}=-\frac{1}{2}$ and $v_{1}=\frac{5}{2}$ found using matrix multiplication or equations.	M1	1.1b
	So $x_{n}=\left(-\frac{1}{2}\right) 2^{n-1}+\left(\frac{5}{2}\right) 4^{n-1}$ and $y_{n}=\left(-\frac{3}{2}\right) 2^{n-1}+\left(\frac{5}{2}\right) 4^{n-1}$ oe	A1	1.1b
		(5)	
(16 marks)			
Notes:			
(a) M1: Finds both x_{2} and y_{2} and attempts x_{3} using them. A1: Correct $x_{3}=38$			
(b)(i) M1: Forms the characteristic equation for \mathbf{A} and attempts to solve (usual rules). A1: Correct eigenvalues. (b)(ii) M1: Correct equations set up for at least one eigenvalue and attempt to solve. A1: One correct eigenvector. A1: Both correct.			
(c) B1ft: Either gives \mathbf{D} as the diagonal matrix with their eigenvalues (either way) on diagonal, or \mathbf{P} as the matrix with their eigenvectors (any multiples) as columns. B1ft: Both \mathbf{P} as the matrix with their eigenvectors (any multiples) as the columns AND \mathbf{D} as the diagonal matrix with the corresponding eigenvalues on diagonal in the correct order to match the columns of \mathbf{P}.			

AS Further Mathematics 8FM0

Specimen Paper - Further Pure Mathematics $\mathbf{2}$ Mark Scheme

Question 2 notes continued

(d)

M1: Changes from $\{u, v\}$ system to $\{x, y\}$ system and applies the recurrence relation to $\binom{x_{n+1}}{y_{n+1}}$. If working in reverse, for this mark both \mathbf{D} and $\binom{u_{n}}{v_{n}}$ must be replaced.
$\mathbf{A 1 *}$: Correctly derives result by introducing $\mathbf{P P}^{-1}$ before applying $\mathbf{P}^{-1} \mathbf{A P}=\mathbf{D}$ and using the transformation again. If working in reverse it is for completing the proof correctly.
(e)

M1: Uses their diagonal matrix to form two separate first order recurrence relations in one variable and attempts to solve each. Allow if the index is n instead of $n-1$.
A1ft: Correct form for each, $u_{1} \times \lambda_{1}^{n-1}$ and $v_{1} \times \lambda_{2}^{n-1}$ for their eigenvalues. May find the closed forms for u_{n} and v_{n} using $u_{1}=-\frac{1}{2}$ and $v_{1}=\frac{5}{2}$ here, but the A1 needs only the correct structure.
M1: Uses the matrix equation or solves simultaneous equations in the x_{n} and y_{n} sequences, with closed forms for u_{n} and v_{n}, to obtain forms for x_{n} and y_{n}.
M1: Uses initial terms to find the constants -- may be awarded before the previous method mark.
A1: Correct forms for both sequences, need not be simplified, but accept any equivalents such as $x_{n}=5 \times 2^{2 n-3}-2^{n-2}=\frac{1}{8} 2^{n}\left(5 \times 2^{n}-2\right)$ and $y_{n}=5 \times 2^{2 n-3}-3 \times 2^{n-2}=\frac{1}{8} 2^{n}\left(5 \times 2^{n}-6\right)$

AS Further Mathematics 8FM0

Specimen Paper - Further Pure Mathematics 2 Mark Scheme

Question	Scheme	Marks	AOs
3(a)	 M1 - any arc from O to 25 i in the first quadrant OR a minor arc from O to ± 25 (in any quadrant) A1-minor arc from O to 25 i in first quadrant.	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$
		(2)	
(b)	$y=\frac{25}{2} \mathrm{i}$ where centre is $x+y \mathrm{i}$	B1	2.2a
	Circle passes through O so $r^{2}=\left(-\frac{25}{2}(2+\sqrt{3})\right)^{2}+\left(\frac{25}{2}\right)^{2}$ newline OR passes through 25i so $r^{2}=\left(-\frac{25}{2}(2+\sqrt{3})\right)^{2}+\left(25-\frac{25}{2}\right)^{2}$ ALT uses circle geometry to deduce angle $O C X$ is $\frac{\pi}{12}$ or angle $C X O$ is 11π / 24 and attempts to use in a correct triangle.	M1	3.1a
	$\begin{aligned} & \Rightarrow r=\sqrt{25^{2}\left(\frac{1}{4}(4+4 \sqrt{3}+3)+\frac{1}{4}\right)}=25 \sqrt{(2+\sqrt{3})} \\ & \text { ALT } r=\frac{12.5}{\sin \left(\frac{\pi}{12}\right)} \text { or } r=\frac{25}{2}(2+\sqrt{3})+\frac{25 / 2}{\tan (11 \pi / 24)} \text { oe } \end{aligned}$	M1	1.1b
	$\Rightarrow r=\frac{25}{2}(\sqrt{6}+\sqrt{2})$ or $r=\operatorname{awrt48.296}(r=48.29629131 \ldots)$	A1	1.1b
		(4)	
(c)	Distance from centre of arc to first ball is $\sqrt{\left(0.5-\left(-\frac{25}{2}(2+\sqrt{3})\right)\right)^{2}+(23.25-12.5)^{2}}$	M1	3.1b
	$\left(=\sqrt{47.150 \ldots{ }^{2}+10.75^{2}}=\sqrt{2338.7448 \ldots}\right)=48.3605 \ldots($ awrt 48.36 $)$	A1	3.4
	So difference between distance to ball and radius of arc is $48.3605 \ldots-48.2962 \ldots=0.0642 \ldots$	M1	1.1b
	$0.064<0.1$ (=twice radius) and so the balls will collide	A1	3.2a
		(4)	

AS Further Mathematics 8FM0

Specimen Paper - Further Pure Mathematics 2 Mark Scheme

Question 3 notes:

(a)

M1: See scheme.
A1: A correct sketch as per scheme.
(b)

B1: Deduces the imaginary part of the centre is $\frac{25}{2} \mathrm{i}$.
M1: Uses that the circle passes through O or 25 i with Pythagoras to form an equation for r^{2} with x and their y. Alternatively, may use circle geometry to find the one of the angles shown with attempt to use it.
M1: Proceeds to find r.
A1: Correct radius, either exact or awrt to 3 d.p.
(c)

M1: Realises the need to find the distance of the first ball from the centre of the circle, so applies Pythagoras to find this.
A1: Correct distance.
M1: Compares distance to radius of circle.
A1: Correct difference, accept (\pm) awrt 0.06 , compared to twice the radius and conclusion that second ball will hit the first.

AS Further Mathematics 8FM0

Specimen Paper - Further Pure Mathematics 2 Mark Scheme

Questio \mathbf{n}	Scheme	Marks	AOs
$\mathbf{4}$	First fact gives $a-b+c=11 k, k \in \mathbb{Z}$ OR second fact gives $a+b+c=2 m+1, m \in \mathbb{Z}$ OR third fact gives $(100 a+10 b+c \equiv 5(\bmod 9) \Rightarrow)$ or $a+b+c=5+9 p$, some $p \in \mathbb{Z}$	M1	1.1b
	Facts 1 and 2 give $a-b+c=2(m-b)+1$ is odd (oe). Facts 1 and 3 give $2 b=5+9 p-11 k$ or $2(a+c)=5+11 k+9 p$ where $k \in\{0,1\}, p \in\{0,1,2\}$ Facts 2 and 3 give $a+b+c \equiv 5+18 q, q \in\{0,1\}$	M1	3.1 a
	Facts 1 and $2:$ must reach $a-b+c=11$ Facts 1 and $3:$ must reach $2 b=12$ or $14($ both values needed) or $2(a+c)=14$ or 16 or $34($ all three needed). Facts 2 and $3:$ must reach $a+b+c=5$ or 23 (both values needed)	A1	2.2 a
Uses the remaining fact to find a value for b (or for $a+c$ using facts 1 and 3 initially).	M1	3.1 a	
	For $b=6$ or for $a+c=17$	A1	2.2 a
$\&$ Thus as $a+c=17$ so a and c must be 8 and 9, so the possibilities are 968 or 869 and no others.	A1	2.1	
	(6)	(6 marks)	

Notes:

M1: Uses any one of the facts to form an equation in a, b and c, e.g property of divisibility by 11 , to form equation $a-b+c=11 k(k \in \mathbb{Z})$ (or $k \in\{0,1\}$ if range of values considered here), OR second fact gives $a+b+c=2 k+1$ (don't accept just $a+b+c$ is odd for this mark), OR achieves $a+b+c \equiv 5(\bmod 9)$ oe from third fact (must reduce the coefficients modulo 9).

M1: Uses a second property AND combines two properties together. E.g. fact 2 gives $a+b+c=2 m+1(m \in \mathbb{Z})$ oe, and combining with fact one we have $a-b+c=a+b+c-2 b$ is also odd, (or adds equations to deduce $2 b=2 m+11 k+1 \Rightarrow k$ odd).
Alternatives include e.g. $a+b+c-5 \in\{0,9,18\}$ from fact three (since these are the only multiples of 9 possible for the ranges on a, b and c) and so $a+b+c-5=0$ or 18 (allow the M if the 0 case is missing).
A1: Correctly combines two facts with consideration of the range of values to deduce a correct equation in just a, b and c. Possibilities are $a-b+c=11$ or $a+b+c=5$ or 23 oe. (Should have both values in the latter case unless a convincing reason why it is not 5 has been given.)
M1: Uses the remaining property and attempts to solve for b. E.g. third fact gives $100 a+10 b+c \equiv 5(\bmod 9)$ and reduces modulo 9 to $a+b+c \equiv 5(\bmod 9)$ and combines with $a-b+c=11$ to deduce $2 b=9 p-6$ oe so $b=\ldots$
Use of facts 1 and 3 initially will require some work of trial an elimination of possibilities here. The cases that cannot happen must be seen to be rejected.
A1: Correct deduction that $b=6$.
A1: Completes the argument and deduces correctly that the only two possible values are 968 and 869 .

AS Further Mathematics 8FM0
Specimen Paper - Further Pure Mathematics 2 Mark Scheme

