Paper 1: Core Pure Mathematics Mark Scheme

| Question | Scheme | Marks | AOs |
| :--- | :--- | :---: | :---: | :---: |

Question	Scheme	Marks	AOs
2(a)	$\mathbf{r} \cdot\left(\begin{array}{r}3 \\ -1 \\ 2\end{array}\right)=\left(\begin{array}{r}5 \\ -3 \\ -4\end{array}\right) \cdot\left(\begin{array}{r}3 \\ -1 \\ 2\end{array}\right)$	M1	1.1b
	$3 x-y+2 z=10$	A1	2.5
		(2)	
(b)	$\left(\begin{array}{r}3 \\ -1 \\ 2\end{array}\right) \cdot\left(\begin{array}{r}-1 \\ -5 \\ 3\end{array}\right)=8$	B1	1.1b
	$\sqrt{(3)^{2}+(-1)^{2}+(2)^{2}} \cdot \sqrt{(-1)^{2}+(-5)^{2}+(3)^{2}} \cos \alpha="-3+5+6 "$	M1	1.1b
	$\theta=90^{\circ}-\arccos \left(\frac{8}{\sqrt{14} \cdot \sqrt{35}}\right)$ or $\sin \theta=\frac{8}{\sqrt{14} \cdot \sqrt{35}}$	M1	2.1
	$\theta=21.2^{\circ}(1 \mathrm{dp}) *$ cso	A1*	1.1b
		(4)	
(c)	$3(7-\lambda)-(3-5 \lambda)+2(-2+3 \lambda)=10 \Rightarrow \lambda=\ldots$	M1	3.1a
	$\lambda=-\frac{1}{2}$	A1	1.1b
	$\overrightarrow{O X}=\left(\begin{array}{r}7 \\ 3 \\ -2\end{array}\right)-\frac{1}{2}\left(\begin{array}{r}-1 \\ -5 \\ 3\end{array}\right)=\left(\begin{array}{l}\ldots \\ \ldots \\ \ldots\end{array}\right)$	M1	1.1b
	$X(7.5,5.5,-3.5)$	A1ft	1.1b
		(4)	
(10 marks)			
Notes:			
(a) M1: Attempts to apply the formula r.n $=\mathbf{a} . \boldsymbol{n}$ A1: Correct Cartesian notation. e.g. $3 x-y+2 z=10$ or $-3 x+y-2 z=-10$			
(b) B1: $\quad \overline{O A} \cdot \boldsymbol{n}=8$ M1: An attempt to apply the correct dot product formula between \mathbf{n} and \mathbf{d} M1: Depends on previous M mark. Applies the dot product formula to find the angle between Π and l A1*: 21.2° cso			

Question 2 notes continued:

(c)

M1: Substitutes l into Π and solves the resulting equation to give $\lambda=\ldots$.
A1: $\quad \lambda=-\frac{1}{2}$ o.e.
M1: Depends on previous M mark. Substitutes their λ into l and finds at least one of the coordinates
A1ft: $(7.5,5.5,-3.5)$ but follow through on their value of λ

Question	Scheme	Marks	AOs
4	$\{w=x-1 \Rightarrow\} x=w+1$	B1	3.1a
	$(w+1)^{3}+3(w+1)^{2}-8(w+1)+6=0$	M1	3.1a
	$w^{3}+3 w^{2}+3 w+1+3\left(w^{2}+2 w+1\right)-8 w-8+6=0$		
		M1	1.1b
	$w^{3}+6 w^{2}+w+2=0$	A1	1.1b
		A1	1.1b
		(5)	
	Alternative		
	$\alpha+\beta+\gamma=-3, \alpha \beta+\beta \gamma+\alpha \gamma=-8, \alpha \beta \gamma=-6$	B1	3.1a
	sumroots $=\alpha-1+\beta-1+\gamma-1$	M1	3.1a
	$=\alpha+\beta+\gamma-3=-3-3=-6$		
	pairsum $=(\alpha-1)(\beta-1)+(\alpha-1)(\gamma-1)+(\beta-1)(\gamma-1)$		
	$=\alpha \beta+\alpha \gamma+\beta \gamma-2(\alpha+\beta+\gamma)+3$		
	$=-8-2(-3)+3=1$		
	product $=(\alpha-1)(\beta-1)(\gamma-1)$		
	$=\alpha \beta \gamma-(\alpha \beta+\alpha \gamma+\beta \gamma)+(\alpha+\beta+\gamma)-1$		
	$=-6-(-8)-3-1=-2$		
	$w^{3}+6 w^{2}+w+2=0$	M1	1.1b
		A1	1.1b
		A1	1.1b
		(5)	
		(5 marks)	
Notes:			
B1: \quad Selects the method of making a connection between x and w by writing $x=w+1$ M1: Applies the process of substituting their $x=w+1$ into $x^{3}+3 x^{2}-8 x+6=0$ M1: Depends on previous M mark. Manipulating their equation into the form $w^{3}+p w^{2}+q w+r=0$ A1: At least two of p, q, r are correct A1: Correct final equation	Selects the method of making a connection between x and w by writing $x=w+1$ Applies the process of substituting their $x=w+1$ into $x^{3}+3 x^{2}-8 x+6=0$ Depends on previous M mark. Manipulating their equation into the form $w^{3}+p w^{2}+q w+r=0$ At least two of p, q, r are correct Correct final equation		
Alternative B1: \quad Selects the method of giving three correct equations each containing α, β and γ M1: Applies the process of finding sum roots, pair sum and product M1: Depends on previous M mark. Applies $w^{3}-($ their sum roots $) w^{2}+($ their pair sum $) w-$ their $\alpha \beta \gamma=0$ A1: At least two of p, q, r are correct A1: Correct final equation			

Question	Scheme	Marks	AOs
5(a)	$\operatorname{det}(\mathbf{M})=(1)(1)-(\sqrt{3})(-\sqrt{3})$	M1	1.1a
	\mathbf{M} is non-singular because $\operatorname{det}(\mathbf{M})=4$ and $\operatorname{sodet}(\mathbf{M}) \neq 0$	A1	2.4
		(2)	
(b)	$\operatorname{Area}(S)=4(5)=20$	B1ft	1.2
		(1)	
(c)	$k=\sqrt{(1)(1)-(\sqrt{3})(-\sqrt{3})}$	M1	1.1b
	$=2$	A1ft	1.1b
		(2)	
(d)	$\cos \theta=\frac{1}{2}$ or $\sin \theta=\frac{\sqrt{3}}{2}$ or $\tan \theta=\sqrt{3}$	M1	1.1b
	$\theta=60^{\circ}$ or $\frac{\pi}{3}$	A1	1.1b
		(2)	
(7 marks)			
Notes:			
(a) M1: An attempt to find $\operatorname{det}(\mathbf{M})$. A1: $\quad \operatorname{det}(\mathbf{M})=4$ and reference to zero, e.g. $4 \neq 0$ and conclusion.			
(b) B1ft: 20 or a correct ft based on their answer to part (a).			
(c) M1: $\sqrt{(\text { their } \operatorname{det} \mathbf{M})}$ A1ft: 2			
(d) M1: Either $\cos \theta=\frac{1}{(\text { their } k \text {) }}$ or $\sin \theta=\frac{\sqrt{3}}{(\text { their } k)}$ or $\tan \theta=\sqrt{3}$ A1: $\quad \theta=60^{\circ}$ or $\frac{\pi}{3}$. Also accept any value satisfying $360 n+60^{\circ}, n \in \mathbb{Z}$, o.e.			

Question	Scheme	Marks	AOs
6(a)	$n=1, \sum_{r=1}^{1} r^{2}=1$ and $\frac{1}{6} n(n+1)(2 n+1)=\frac{1}{6}(1)(2)(3)=1$	B1	2.2a
	Assume general statement is true for $n=k$ So assume $\sum_{r=1}^{k} r^{2}=\frac{1}{6} k(k+1)(2 k+1)$ is true	M1	2.4
	$\sum_{r=1}^{k+1} r^{2}=\frac{1}{6} k(k+1)(2 k+1)+(k+1)^{2}$	M1	2.1
	$=\frac{1}{6}(k+1)\left(2 k^{2}+7 k+6\right)$	A1	1.1b
	$=\frac{1}{6}(k+1)(k+2)(2 k+3)=\frac{1}{6}(k+1)(\{k+1\}+1)(2\{k+1\}+1)$	A1	1.1b
	Then the general result is true for $n=k+1$ As the general result has been shown to be true for $n=1$, then the general result is true for all $n \in \mathbb{Z}^{+}$	A1	2.4
		(6)	
(b)	$\sum_{r=1}^{n} r(r+6)(r-6)=\sum_{r=1}^{n}\left(r^{3}-36 r\right)$		
	236	M1	2.1
		A1	1.1b
	$=\frac{1}{4} n(n+1)[n(n+1)-72]$	M1	1.1b
	$=\frac{1}{4} n(n+1)(n-8)(n+9) *$ cso	A1*	1.1b
		(4)	
(c)	$\frac{1}{4} n(n+1)(n-8)(n+9)=\frac{17}{6} n(n+1)(2 n+1)$	M1	1.1b
	$\frac{1}{4}(n-8)(n+9)=\frac{17}{6}(2 n+1)$	M1	1.1b
	$3 n^{2}-65 n-250=0$	A1	1.1b
	$(3 n+10)(n-25)=0$	M1	1.1b
	(As n must be a positive integer,) $n=25$	A1	2.3
		(5)	
(15 marks)			

Question 6 notes:

(a)

B1: Checks $n=1$ works for both sides of the general statement
M1: Assumes (general result) true for $n=k$
M1: Attempts to add $(k+1)^{\text {th }}$ term to the sum of k terms
A1: \quad Correct algebraic work leading to either $\frac{1}{6}(k+1)\left(2 k^{2}+7 k+6\right)$
or $\frac{1}{6}(k+2)\left(2 k^{2}+5 k+3\right)$ or $\frac{1}{6}(2 k+3)\left(k^{2}+3 k+2\right)$
A1: \quad Correct algebraic work leading to $\frac{1}{6}(k+1)(\{k+1\}+1)(2\{k+1\}+1)$
A1: cso leading to a correct induction statement conveying all three underlined points
(b)

M1: Substitutes at least one of the standard formulae into their expanded expression
A1: Correct expression
M1: Depends on previous M mark. Attempt to factorise at least $n(n+1)$ having used
$\mathbf{A 1 * : ~ O b t a i n s ~} \frac{1}{4} n(n+1)(n-8)(n+9)$ by cso
(c)

M1: Sets their part (a) answer equal to $\frac{17}{6} n(n+1)(2 n+1)$
M1: Cancels out $n(n+1)$ from both sides of their equation
A1: $\quad 3 n^{2}-65 n-250=0$
M1: A valid method for solving a 3 term quadratic equation
A1: Only one solution of $n=25$

Question	Scheme	Marks	AOs
7(a)	Depth $=0.16$ (m)	B1	2.2b
		(1)	
(b)	$y=1+k x^{2} \Rightarrow 1.16=1+k(0.2)^{2} \Rightarrow k=\ldots$	M1	3.3
	$\Rightarrow k=4$ cao $\left\{\right.$ So $\left.y=1+4 x^{2}\right\}$	A1	1.1b
		(2)	
(c)	$\frac{\pi}{4} \int(y-1) \mathrm{d} y$ $\frac{\pi}{4} \int y \mathrm{~d} y$	B1ft	1.1a
	$=\left\{\frac{\pi}{4}\right\} \int_{1}^{1.16}(y-1) \mathrm{d} y \quad=\left\{\frac{\pi}{4}\right\} \int_{0}^{0.16} y \mathrm{~d} y$	M1	3.3
		M1	1.1b
	$\{\overline{4}\}\left[\frac{y^{2}}{2}-y\right]_{1} \quad=\left\{\frac{1}{4}\right\}\left[\frac{y^{2}}{2}\right]_{0}$	A1	1.1b
	$=\frac{\pi}{4}\left(\left(\frac{1.16^{2}}{2}-1.16\right)-\left(\frac{1}{2}-1\right)\right)\{=0.0032 \pi\}=\frac{\pi}{4}\left(\left(\frac{0.16^{2}}{2}\right)-(0)\right)\{=0.0032 \pi\}$		
	$V_{\text {cylinder }}=\pi(0.2)^{2}(1.16)\{=0.0464 \pi\}$	B1	1.1b
	Volume $=0.0464 \pi-0.0032 \pi\{=0.0432 \pi\}$	M1	3.4
	$=0.1357168026 \ldots=0.136\left(\mathrm{~m}^{3}\right)(3 \mathrm{sf})$	A1	1.1b
		(7)	
(d)	Any one of e.g. the measurements may not be accurate the inside surface of the bowl may not be smooth there may be wastage of concrete when making the bird bath	B1	3.5b
		(1)	
(e)	Some comment consistent with their values. We do need a reason $\text { e.g. }\left[\left(\frac{0.136-0.127}{0.127}\right) \times 100=7.0866 \ldots\right]$ so not a good estimate because the volume of concrete needed to make the bird bath is approximately 7% lower than that predicted by the model or We might expect the actual amount of concrete to exceed that which the model predicts due to wastage, so the model does not look suitable since it predicts more concrete than was used	B1ft	3.5a
		(1)	
(12 marks)			

Question 7 notes:

(a)

B1: Infers that the maximum depth of the bird bath could be $0.16(\mathrm{~m})$
(b)

M1: Substitutes $y=1.16$ and $x=0.2$ or $x=-0.2$ into $y=1+k x^{2}$ and rearranges to give $k=\ldots$.
A1: $\quad k=4$ cao
(c)

B1ft: Uses the model to obtain either $\frac{\pi}{(\text { their } k)} \int(y-1) \mathrm{d} y$ or $\frac{\pi}{(\text { their } k)} \int y \mathrm{~d} y$
M1: Chooses limits that are appropriate to their model
M1: Integrates y (with respect to y) to give $\pm \lambda y^{2}$, where $\lambda \neq 0$ is a constant
A1: Uses their model correctly to give either $y-1 \rightarrow \frac{y^{2}}{2}-y$ or $y \rightarrow \frac{y^{2}}{2}$
B1: $\quad V_{\text {cylinder }}=\pi(0.2)^{2}(1.16)$ or 0.0464π or $\frac{29}{625} \pi$, o.e.
M1: Depends on both previous M marks
Uses the model to find $V_{\text {their cylinder }}$ - their integrated volume
A1: $\quad 0.136$ cao
(d)

B1: States an acceptable limitation of the model

(e)

B1ft: Compares the actual volume with their answer to (c). Makes an assessment of the model. E.g. evaluates the percentage error and uses this to make a sensible comment about the model with a reason

| Question | Marks | AOs |
| :--- | :--- | :--- | :--- |
| 8(a) | M1 | 1.1 b |

Question	Scheme	Marks	AOs
9(a)	$\overrightarrow{A B}=\left(\begin{array}{c}9 \\ 4 \\ 11\end{array}\right)-\left(\begin{array}{r}-3 \\ 1 \\ -7\end{array}\right)\left\{=\left(\begin{array}{r}12 \\ 3 \\ 18\end{array}\right)\right\}$ or $\mathbf{d}=\left(\begin{array}{l}4 \\ 1 \\ 6\end{array}\right)$	M1	3.1a
	$\{\overrightarrow{O F}=\mathbf{r}=\}\left(\begin{array}{r}-3 \\ 1 \\ -7\end{array}\right)+\lambda\left(\begin{array}{r}12 \\ 3 \\ 18\end{array}\right)$	M1	1.1b
	$\begin{aligned} & \{\overrightarrow{O F} \cdot \overrightarrow{A B}=0 \Rightarrow\}\left(\begin{array}{c} -3+12 \lambda \\ 1+3 \lambda \\ -7+18 \lambda \end{array}\right) \cdot\left(\begin{array}{r} 12 \\ 3 \\ 18 \end{array}\right)=0 \\ & \Rightarrow-36+144 \lambda+3+9 \lambda-126+324 \lambda=0 \Rightarrow 477 \lambda-159=0 \end{aligned}$	dM1	1.1b
	$\Rightarrow \lambda=\frac{1}{3}$	A1	1.1b
	$\begin{aligned} & \{\overrightarrow{O F}=\}\left(\begin{array}{r} -3 \\ 1 \\ -7 \end{array}\right)+\frac{1}{3}\left(\begin{array}{r} 12 \\ 3 \\ 18 \end{array}\right)=\left(\begin{array}{r} 1 \\ 2 \\ -1 \end{array}\right) \\ & \text { and minimum distance }=\sqrt{(1)^{2}+(2)^{2}+(-1)^{2}} \end{aligned}$	dM1	3.1a
	$=\sqrt{6}$ or $2.449 \ldots$	A1	1.1b
	>2, so the octopus is not able to catch the fish F	A1ft	3.2a
		(7)	

9(a) Alternative 1		
$\overrightarrow{A B}=\left(\begin{array}{c}9 \\ 4 \\ 11\end{array}\right)-\left(\begin{array}{r}-3 \\ 1 \\ -7\end{array}\right)\left\{=\left(\begin{array}{r}12 \\ 3 \\ 18\end{array}\right)\right\}$ or $\mathbf{d}=\left(\begin{array}{l}4 \\ 1 \\ 6\end{array}\right)$	M1	3.1a
$\left\{\overrightarrow{O A}=\left(\begin{array}{r}-3 \\ 1 \\ -7\end{array}\right)\right.$ and $\left.\overrightarrow{A B}=\left(\begin{array}{r}12 \\ 3 \\ 18\end{array}\right) \Rightarrow\right\}\left(\begin{array}{r}-3 \\ 1 \\ -7\end{array}\right) \cdot\left(\begin{array}{r}12 \\ 3 \\ 18\end{array}\right)$	M1	1.1b
$\cos \theta\left\{=\frac{\overrightarrow{O A} \bullet \overrightarrow{A B}}{\|\overrightarrow{O A}\| \cdot\|\overrightarrow{A B}\|}\right\}=\frac{ \pm\left(\left(\begin{array}{r} -3 \\ 1 \\ -7 \end{array}\right) \cdot\left(\begin{array}{r} 12 \\ 3 \\ 18 \end{array}\right)\right)}{\sqrt{(-3)^{2}+(1)^{2}+(-7)^{2}} \cdot \sqrt{(12)^{2}+(3)^{2}+(18)^{2}}}$	dM1	1.1b
$\left\{\cos \theta=\frac{-36+3-126}{\sqrt{59} \cdot \sqrt{477}}=\frac{-159}{\sqrt{59} \cdot \sqrt{477}}\right\}$		
$\theta=161.4038029 \ldots$... or 18.59619709... or $\sin \theta=0.3188964021 . .$.	A1	1.1b
minimum distance $=\sqrt{(-3)^{2}+(1)^{2}+(-7)^{2}} \sin (18.59619709 \ldots)$	dM1	3.1a
$=\sqrt{6}$ or $2.449 \ldots$	A1	1.1b
>2, so the octopus is not able to catch the fish F	A1ft	3.2a
	(7)	
9(a) Alternative 2		
$\overrightarrow{A B}=\left(\begin{array}{c}9 \\ 4 \\ 11\end{array}\right)-\left(\begin{array}{r}-3 \\ 1 \\ -7\end{array}\right)\left\{=\left(\begin{array}{r}12 \\ 3 \\ 18\end{array}\right)\right\}$ or $\mathbf{d}=\left(\begin{array}{l}4 \\ 1 \\ 6\end{array}\right)$	M1	3.1a
$\{\overrightarrow{O F}=\mathbf{r}=\}\left(\begin{array}{r}-3 \\ 1 \\ -7\end{array}\right)+\lambda\left(\begin{array}{r}12 \\ 3 \\ 18\end{array}\right)$	M1	1.1b
$\|\overrightarrow{O F}\|^{2}=(-3+12 \lambda)^{2}+(1+3 \lambda)^{2}+(-7+18 \lambda)^{2}$	dM1	1.1b
$=9-72 \lambda+144 \lambda^{2}+1+6 \lambda+9 \lambda^{2}+49-252 \lambda+324 \lambda^{2}$		
$=477 \lambda^{2}-318 \lambda+59$	A1	1.1b
$=53(3 \lambda-1)^{2}+6$	dM1	3.1a
minimum distance $=\sqrt{6}$ or $2.449 \ldots$	A1	1.1b
>2, so the octopus is not able to catch the fish F	A1ft	3.2a
	(7)	

Question	Scheme	Marks	AOs
$9(\mathrm{~b})$	e.g. Fish F may not swim in an exact straight line from A to B Fish F may hit an obstacle whilst swimming from A to B Fish F may deviate his path to avoid being caught by the octopus	B1	3.5b
		(1)	
(c)	e.g. Octopus is effectively modelled as a particle - so we may need to look at where the octopus's mass is distributed Octopus may during the fish F 's motion move away from its fixed location at O	B1	3.5b
		(1)	
(9 marks)			
Question 9 notes:			
(a) M1: Att M1: App M1: Dep (thei A1: Lam M1: Dep A1: $\sqrt{6}$ A1ft : Cor	mpts to find $\overrightarrow{O B}-\overrightarrow{O A}$ or $\overrightarrow{O A}-\overrightarrow{O B}$ or the direction vector \mathbf{d} ies $\overrightarrow{O A}+\lambda$ (their $\overrightarrow{A B}$ or their $\overrightarrow{B A}$ or their \mathbf{d}) or equivalent nds on previous M mark. Writes down $\overrightarrow{O F}$ which is in terms of $\lambda) \bullet($ their $\overrightarrow{A B})=0$. Can be implied bda is correct. e.g. $\lambda=\frac{1}{3}$ for $\overrightarrow{A B}=\left(\begin{array}{r}12 \\ 3 \\ 18\end{array}\right)$ or $\lambda=1$ for $\mathbf{d}=\left(\begin{array}{l}4 \\ 1 \\ 6\end{array}\right)$ ends on previous M mark. Complete method for finding $\|\overrightarrow{O F}\|$ or awrt 2.4 ect follow through conclusion, which is in context with the question		
Alternative (a) M1: Atte M1: Rea M1: Dep $($ o.e A1: $\theta=$ M1: Dep A1: $\sqrt{6}$ A1ft $:$ Cor	1 mpts to find $\overrightarrow{O B}-\overrightarrow{O A}$ or $\overrightarrow{O A}-\overrightarrow{O B}$ or the direction vector d sation that the dot product is required between $\overrightarrow{O A}$ and their $\overrightarrow{A B}$. nds on previous M mark. Applies dot product formula between $\overrightarrow{O A}$ awrt 161.4 or awrt 18.6 or $\sin \theta=$ awrt 0.319 nds on previous M mark. (their $O A$) $\sin ($ their θ) or awrt 2.4 ect follow through conclusion, which is in context with the question	heir $\overrightarrow{A B}$	

Question 9 notes continued:

Alternative 2

(a)

M1: Attempts to find $\overrightarrow{O B}-\overrightarrow{O A}$ or $\overrightarrow{O A}-\overrightarrow{O B}$ or the direction vector d
M1: Applies $\overrightarrow{O A}+\lambda$ (their $\overrightarrow{A B}$ or their $\overrightarrow{B A}$ or their \mathbf{d}) or equivalent
M1: Depends on previous M mark. Applies Pythagoras by finding $|\overrightarrow{O F}|^{2}$, o.e.
A1: $\quad|\overrightarrow{O F}|^{2}=477 \lambda^{2}-318 \lambda+59$
M1: Depends on previous M mark. Method of completing the square or differentiating their $|\overrightarrow{O F}|^{2}$ w.r.t. λ
A1: $\sqrt{6}$ or awrt 2.4
A1ft : Correct follow through conclusion, which is in context with the question
(b)

B1: An acceptable criticism for fish F , which is in context with the question
(c)

B1: An acceptable criticism for the octopus, which is in context with the question

