-			
Questi	on Scheme	Marks	AOs
1(a)	$\alpha\left(\frac{5}{\alpha}\right)\left(\alpha+\frac{5}{\alpha}-1\right)=15$	M1	1.1b
	$(\alpha)(-\alpha)$	Al	1.1b
	$\Rightarrow 5\alpha + \frac{25}{\alpha} - 5 = 15 \Rightarrow \alpha^2 - 4\alpha + 5 = 0$		
		M1	3.1a
	$\Rightarrow \alpha = \frac{-4\pm\sqrt{(-4)^2 - 4(1)(5)}}{2(1)}$ or $(\alpha - 2)^2 - 4 + 5 = 0 \Rightarrow \alpha =$		
	$\Rightarrow \alpha = 2 \pm i$	A1	1.1b
	Hence the roots of $f(z) = 0$ are $2 + i$, $2 - i$ and 3	A1	2.2a
		(5)	
(b)	$p = -("(2 + i)" + "(2 - i)" + "3") \Rightarrow p =$	M1	3.1a
	$\Rightarrow p = -7 \cos \theta$	A1	1.1b
		(2)	
	1(b) alternative	·	
	$f(z) = (z-3)(z^2 - 4z + 5) \Longrightarrow p = \dots$	M1	3.1a
	$\Rightarrow p = -7 \cos \theta$	A1	1.1b
		(2)	
		(7 n	narks)
Notes:			
(a) M1: 1	Aultiplies the three given roots together and sets the result equal to 15 or	_15	
	btains a correct equation in α	1.5	
M1: 1	forms a quadratic equation in α and attempts to solve this equation by eine square or using the quadratic formula to give $\alpha = \dots$	ther comple	ting
	$\alpha = 2 \pm i$		
	Deduces the roots are $2 + i$, $2 - i$ and 3		
(b)			
M1:	Applies the process of finding $-\sum (\text{of their three roots found in part}(a))$ to	give $p =$	•
A1:	p = -7 by correct solution only		
(b) A	lternative		
M1: /	Alternative applies the process expanding $(z - "3")(z - (\text{their sum})z + \text{their product})$ in or z = -7 by correct solution only	der to find p	=

Paper 1: Core Pure Mathematics Mark Scheme

Question	Scheme	Marks	AOs
2(a)	$\mathbf{r} \bullet \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 5 \\ -3 \\ -4 \end{pmatrix} \bullet \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}$	M1	1.1b
	3x - y + 2z = 10	A1	2.5
		(2)	
(b)	$ \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix} \bullet \begin{pmatrix} -1 \\ -5 \\ 3 \end{pmatrix} = 8 $	B1	1.1b
	$\sqrt{(3)^2 + (-1)^2 + (2)^2}$. $\sqrt{(-1)^2 + (-5)^2 + (3)^2} \cos \alpha = "-3 + 5 + 6"$	M1	1.1b
	$\theta = 90^{\circ} - \arccos\left(\frac{8}{\sqrt{14}.\sqrt{35}}\right) \text{ or } \sin\theta = \frac{8}{\sqrt{14}.\sqrt{35}}$	M1	2.1
	$\theta = 21.2^{\circ} (1 \text{ dp}) \text{ * cso}$	A1*	1.1b
		(4)	
(c)	$3(7-\lambda) - (3-5\lambda) + 2(-2+3\lambda) = 10 \Longrightarrow \lambda = \dots$	M1	3.1a
	$\lambda = -\frac{1}{2}$	A1	1.1b
	$\overrightarrow{OX} = \begin{pmatrix} 7\\3\\-2 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} -1\\-5\\3 \end{pmatrix} = \begin{pmatrix} \dots\\\dots\\\dots\\ \dots \end{pmatrix}$	M1	1.1b
	<i>X</i> (7.5, 5.5, -3.5)	A1ft	1.1b
		(4)	
Notes:		(10 n	narks)
A1: Corr Note: Do r (b) Do r B1: OA	mpts to apply the formula $\mathbf{r.n} = \mathbf{a.n}$ ect Cartesian notation. e.g. $3x - y + 2z = 10$ or $-3x + y - 2z = -10$ not allow final answer given as $\mathbf{r} \cdot (3\mathbf{i} - \mathbf{j} + 2\mathbf{k}) = 10$, o.e. $\mathbf{n} = 8$	10	
M1: Depe <i>П</i> ал	attempt to apply the correct dot product formula between n and d ends on previous M mark. Applies the dot product formula to find the nd l 2° cso	angle betw	een

Question 2 notes continued:

(c)

- M1: Substitutes l into Π and solves the resulting equation to give $\lambda = \dots$
- A1: $\lambda = -\frac{1}{2}$ o.e.
- M1: Depends on previous M mark. Substitutes their λ into l and finds at least one of the coordinates
- A1ft: (7.5, 5.5, -3.5) but follow through on their value of λ

Quest	ion Scheme	Marks	AOs
3	x = value of savings account, $y =$ value of property bond account, z = value of share dealing account	M1	3.1b
	x + y + z = 5000 x + 400 = y 0.015x + 0.035y - 0.025z = 79 or 1.015x + 1.035y + 0.975z = 5079	A1	1.1b
	Let $\mathbf{A} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 0.015 & 0.035 & -0.025 \end{pmatrix}$ or $\begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1.015 & 1.035 & 0.975 \end{pmatrix}$		
	e.g. $\begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 0.015 & 0.035 & -0.025 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 5000 \\ -400 \\ 79 \end{pmatrix}$	M1	3.1a
	$\left(\begin{array}{cccc} 0.015 & 0.035 & -0.025 \end{array}\right)\left(\begin{array}{c} z \end{array}\right) \left(\begin{array}{c} 79 \end{array}\right)$	A1	1.1b
	$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 0.015 & 0.035 & -0.025 \end{pmatrix}^{-1} \begin{pmatrix} 5000 \\ -400 \\ 79 \end{pmatrix} = \begin{pmatrix} \dots \\ \dots \\ \dots \end{pmatrix}$	M1	1.1b
	$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1800 \\ 2200 \\ 1000 \end{pmatrix}$	Al	1.1b
	Tyler invested £1800 in the savings account, £2200 in the property bond account and £1000 in the share dealing account	A1ft	3.2a
		(7 n	narks)
Notes M1:	Attempts to set up 3 equations with 3 unknowns		
A1:	At least 2 equations are correct with the appropriate variables defined		
M1:	Sets up a matrix equation of the form, e.g. $\begin{pmatrix} \cdots & \cdots & \cdots \\ \cdots & \cdots & \cdots \\ y \\ z \end{pmatrix} = \begin{pmatrix} \cdots \\ \cdots \\ z \end{pmatrix}$, where " \cdots " are		
A1:	numerical values Correct matrix equation (or equivalent)		
M1:	Depends on previous M mark. Applies (their \mathbf{A}) ⁻¹ $\begin{pmatrix} 5000 \\ their "-400" \\ their "79" \end{pmatrix}$ and obtain	ns at least	one
A1: A1ft:	value of x, y or z Correct answer Correct follow through answer in context		

Questio	n Scheme	Marks	AOs	
4	$\{w = x - 1 \Longrightarrow\} x = w + 1$	B1	3.1a	
	$(w+1)^3 + 3(w+1)^2 - 8(w+1) + 6 = 0$	M1	3.1a	
	$w^{3} + 3w^{2} + 3w + 1 + 3(w^{2} + 2w + 1) - 8w - 8 + 6 = 0$			
		M1	1.1b	
	$w^3 + 6w^2 + w + 2 = 0$	A1	1.1b	
		A1	1.1b	
		(5)		
	Alternative			
	$\alpha + \beta + \gamma = -3, \alpha\beta + \beta\gamma + \alpha\gamma = -8, \alpha\beta\gamma = -6$	B1	3.1a	
	sum roots = $\alpha - 1 + \beta - 1 + \gamma - 1$			
	$= \alpha + \beta + \gamma - 3 = -3 - 3 = -6$			
	pair sum = $(\alpha - 1)(\beta - 1) + (\alpha - 1)(\gamma - 1) + (\beta - 1)(\gamma - 1)$			
	$= \alpha\beta + \alpha\gamma + \beta\gamma - 2(\alpha + \beta + \gamma) + 3$	— M1	3.1a	
	= -8 - 2(-3) + 3 = 1	1011	J.1a	
	$product = (\alpha - 1)(\beta - 1)(\gamma - 1)$			
	$= \alpha\beta\gamma - (\alpha\beta + \alpha\gamma + \beta\gamma) + (\alpha + \beta + \gamma) - 1$			
	= -6 - (-8) - 3 - 1 = -2			
		M1	1.1b	
	$w^3 + 6w^2 + w + 2 = 0$	A1	1.1b	
		Al	1.1b	
		(5)		
Neters		(5 n	narks)	
Notes: B1: S	elects the method of making a connection between x and w by writing x	v = w + 1		
	applies the process of substituting their $x = w + 1$ into $x^3 + 3x^2 - 8x + 6 = 0$	W 1 1		
	Depends on previous M mark. Manipulating their equation into the form			
1	$+pw^2 + qw + r = 0$			
	at least two of p , q , r are correct correct final equation			
Alternati B1: S	we elects the method of giving three correct equations each containing α , β	β and γ		
M1: A	pplies the process of finding sum roots, pair sum and product	,		
	Depends on previous M mark. Applies			
	w^{3} – (their sum roots) w^{2} + (their pair sum) w – their $\alpha\beta\gamma = 0$ t least two of p , q , r are correct			
	orrect final equation			

Question	Scheme	Marks	AOs	
5(a)	$\det(\mathbf{M}) = (1)(1) - (\sqrt{3})(-\sqrt{3})$	M1	1.1a	
	M is non-singular because $det(\mathbf{M}) = 4$ and so $det(\mathbf{M}) \neq 0$	A1	2.4	
		(2)		
(b)	Area(S) = 4(5) = 20	B1ft	1.2	
		(1)		
(c)	$k = \sqrt{(1)(1) - (\sqrt{3})(-\sqrt{3})}$	M1	1.1b	
	= 2	Alft	1.1b	
		(2)		
(d)	$\cos\theta = \frac{1}{2}$ or $\sin\theta = \frac{\sqrt{3}}{2}$ or $\tan\theta = \sqrt{3}$	M1	1.1b	
	$\theta = 60^{\circ} \text{ or } \frac{\pi}{3}$	A1	1.1b	
		(2)		
		(7 n	narks)	
Notes:				
	attempt to find det(M). M) = 4 and reference to zero, e.g. $4 \neq 0$ and conclusion.			
(b) B1ft: 20 o	r a correct ft based on their answer to part (a).			
•	neir detM)			
A1ft: 2 (d)				
	1			
A1: $\theta =$	60° or $\frac{\pi}{3}$. Also accept any value satisfying $360n + 60^\circ$, $n \in \mathbb{Z}$, o.e.			

Question	Scheme	Marks	AOs
6(a)	$n=1, \sum_{r=1}^{1} r^2 = 1 \text{ and } \frac{1}{6}n(n+1)(2n+1) = \frac{1}{6}(1)(2)(3) = 1$	B1	2.2a
	Assume general statement is true for $n = k$ So assume $\sum_{r=1}^{k} r^2 = \frac{1}{6}k(k+1)(2k+1)$ is true	M1	2.4
	$\sum_{r=1}^{k+1} r^2 = \frac{1}{6}k(k+1)(2k+1) + (k+1)^2$	M1	2.1
	$=\frac{1}{6}(k+1)(2k^2+7k+6)$	A1	1.1b
	$=\frac{1}{6}(k+1)(k+2)(2k+3) = \frac{1}{6}(k+1)(\{k+1\}+1)(2\{k+1\}+1)$	A1	1.1b
	Then the general result is true for $n = k + 1$ As the general result has been shown to be true for $n = 1$, then the general result is true for all $n \in \mathbb{Z}^+$	A1	2.4
		(6)	
(b)	$\sum_{r=1}^{n} r(r+6)(r-6) = \sum_{r=1}^{n} (r^{3} - 36r)$		
	$=\frac{1}{4}n^{2}(n+1)^{2}-\frac{36}{2}n(n+1)$	M1	2.1
	$-\frac{1}{4}n(n+1) - \frac{1}{2}n(n+1)$	A1	1.1b
	$=\frac{1}{4}n(n+1)[n(n+1)-72]$	M1	1.1b
	$= \frac{1}{4}n(n+1)(n-8)(n+9) * cso$	A1*	1.1b
		(4)	
(c)	$\frac{1}{4}n(n+1)(n-8)(n+9) = \frac{17}{6}n(n+1)(2n+1)$	M1	1.1b
	$\frac{1}{4}(n-8)(n+9) = \frac{17}{6}(2n+1)$	M1	1.1b
	$3n^2 - 65n - 250 = 0$	A1	1.1b
	(3n+10)(n-25) = 0	M1	1.1b
	(As <i>n</i> must be a positive integer,) $n = 25$	Al	2.3
		(5)	
		(15 m	narks)

Question 6 notes: (a) B1: Checks n = 1 works for both sides of the general statement Assumes (general result) true for n = kM1: Attempts to add $(k + 1)^{\text{th}}$ term to the sum of k terms M1: Correct algebraic work leading to either $\frac{1}{6}(k+1)(2k^2+7k+6)$ A1: or $\frac{1}{6}(k+2)(2k^2+5k+3)$ or $\frac{1}{6}(2k+3)(k^2+3k+2)$ Correct algebraic work leading to $\frac{1}{6}(k+1)(\{k+1\}+1)(2\{k+1\}+1)$ A1: A1: cso leading to a correct induction statement conveying all three underlined points (b) M1: Substitutes at least one of the standard formulae into their expanded expression A1: Correct expression **M1**: Depends on previous M mark. Attempt to factorise at least n(n+1) having used A1*: Obtains $\frac{1}{4}n(n+1)(n-8)(n+9)$ by cso (c) Sets their part (a) answer equal to $\frac{17}{6}n(n+1)(2n+1)$ M1: Cancels out n(n+1) from both sides of their equation M1: $3n^2 - 65n - 250 = 0$ A1: A valid method for solving a 3 term quadratic equation M1: Only one solution of n = 25A1:

Question	Schem	e	Marks	AOs
7(a)	Depth = $0.16 (m)$		B1	2.2b
			(1)	
(b)	$y = 1 + kx^2 \implies 1.16 = 1 + k(0.2)^2 \implies k = \dots$		M1	3.3
	$\Rightarrow k = 4 \operatorname{cao} \{ \operatorname{So} y = 1 + 4 \}$	x^2	A1	1.1b
			(2)	
(c)	$\frac{\pi}{4}\int (y-1)\mathrm{d}y$	$\frac{\pi}{4}\int y\mathrm{d}y$	B1ft	1.1a
	$=\left\{\frac{\pi}{4}\right\}\int_{1}^{1.16}(y-1)\mathrm{d}y$	$=\left\{\frac{\pi}{4}\right\}\int_{0}^{0.16} y \mathrm{d}y$	M1	3.3
	$\left[\pi\right]\left[y^2\right]^{1.16}$	$(\pi) [y^2]^{0.16}$	M1	1.1b
	$= \left\{\frac{\pi}{4}\right\} \left[\frac{y^2}{2} - y\right]_1^{1.16}$	$= \left\{\frac{\pi}{4}\right\} \left[\frac{y^2}{2}\right]_0^{0.16}$	A1	1.1b
	$= \frac{\pi}{4} \left(\left(\frac{1.16^2}{2} - 1.16 \right) - \left(\frac{1}{2} - 1 \right) \right) \left\{ = 0.0032\pi \right\}$	$=\frac{\pi}{4}\left(\left(\frac{0.16^{2}}{2}\right)-(0)\right) \ \left\{=0.0032\pi\right\}$		
	$V_{\text{cylinder}} = \pi (0.2)^2 (1.16) \{= 0.0464\pi\}$		B1	1.1b
	Volume = $0.0464\pi - 0.0032\pi \{= 0.043\}$	32π	M1	3.4
	= 0.1357168026 = 0.136(m ²	³) (3sf)	A1	1.1b
			(7)	
(d)	(d) Any one of e.g. the measurements may not be accurate the inside surface of the bowl may not be smooth there may be wastage of concrete when making the bird bath		B1	3.5b
			(1)	
(e)	Some comment consistent with their values. We do need a reason e.g. $\left[\left(\frac{0.136 - 0.127}{0.127}\right) \times 100 = 7.0866\right]$ so not a good estimate because the volume of concrete needed to make the bird bath is approximately 7% lower than that predicted by the model Or We might expect the actual amount of concrete to exceed that which the model predicts due to wastage, so the model does not look suitable since it predicts more concrete than was used		B1ft	3.5a
			(1)	
			(12 n	narks)

Quest	Question 7 notes:		
(a) B1:	Infers that the maximum depth of the bird bath could be 0.16 (m)		
(b)			
M1:	Substitutes $y = 1.16$ and $x = 0.2$ or $x = -0.2$ into $y = 1 + kx^2$		
A1:	and rearranges to give $k = \dots$ k = 4 cao		
(c)			
B1ft:	Uses the model to obtain either $\frac{\pi}{(\text{their }k)} \int (y-1) dy$ or $\frac{\pi}{(\text{their }k)} \int y dy$		
M1:	Chooses limits that are appropriate to their model		
M1:	Integrates y (with respect to y) to give $\pm \lambda y^2$, where $\lambda \neq 0$ is a constant		
A1:	Uses their model correctly to give either $y-1 \rightarrow \frac{y^2}{2} - y$ or $y \rightarrow \frac{y^2}{2}$		
B1:	$V_{\text{cylinder}} = \pi (0.2)^2 (1.16) \text{ or } 0.0464\pi \text{ or } \frac{29}{625}\pi, \text{ o.e.}$		
M1:	Depends on both previous M marks		
	Uses the model to find $V_{\text{their cylinder}}$ – their integrated volume		
A1:	0.136 cao		
(d) B1:	States an acceptable limitation of the model		
(e) B1ft:	Compares the actual volume with their answer to (c). Makes an assessment of the model. E.g. evaluates the percentage error and uses this to make a sensible comment about the model with a reason		

Questio	n Scheme	Marks	AOs		
8(a)	Im	M1	1.1b		
		A1	1.1b		
		M1	1.1b		
		A1	2.2a		
	-3 <i>O</i> Re	M1	3.1a		
		A1	1.1b		
		(6)			
(b)	$(\arg w)_{\max} = \frac{\pi}{2} + \arcsin\left(\frac{3}{4}\right)$	M1	3.1a		
	= 2.42 (2dp) cao	A1	1.1b		
		(2)			
		(8 n	narks)		
Notes:					
 (a) M1: Circle A1: Centre (0, 4) and above the real axis M1: Half-line A1: (-3, 4) positioned correctly and the half-line intersects the top of the circle on the <i>y</i>-axis M1: Depends on both previous M marks Shades in a region inside the circle and below the half-line A1: cso 					
Note: Fi	hal A1 mark is dependent on all previous marks being scored in part (a)				
	: Uses trigonometry to give an expression for an angle in the range $\left(\frac{\pi}{2}, \pi\right)$ or (90°, 180°)				
	(2) 42 cao				

Question	Scheme	Marks	AOs
9(a)	$\overrightarrow{AB} = \begin{pmatrix} 9\\ 4\\ 11 \end{pmatrix} - \begin{pmatrix} -3\\ 1\\ -7 \end{pmatrix} \left\{ = \begin{pmatrix} 12\\ 3\\ 18 \end{pmatrix} \right\} \text{ or } \mathbf{d} = \begin{pmatrix} 4\\ 1\\ 6 \end{pmatrix}$	M1	3.1a
	$\left\{\overline{OF} = \mathbf{r} = \right\} \begin{pmatrix} -3\\1\\-7 \end{pmatrix} + \lambda \begin{pmatrix} 12\\3\\18 \end{pmatrix}$	M1	1.1b
	$\left\{ \overrightarrow{OF} \bullet \overrightarrow{AB} = 0 \Rightarrow \right\} \begin{pmatrix} -3 + 12\lambda \\ 1 + 3\lambda \\ -7 + 18\lambda \end{pmatrix} \bullet \begin{pmatrix} 12 \\ 3 \\ 18 \end{pmatrix} = 0$	dM1	1.1b
	$\Rightarrow -36 + 144\lambda + 3 + 9\lambda - 126 + 324\lambda = 0 \Rightarrow 477\lambda - 159 = 0$		
	$\Rightarrow \lambda = \frac{1}{3}$	A1	1.1b
	$\left\{\overrightarrow{OF} = \right\} \begin{pmatrix} -3\\1\\-7 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} 12\\3\\18 \end{pmatrix} = \begin{pmatrix} 1\\2\\-1 \end{pmatrix}$ and minimum distance = $\sqrt{(1)^2 + (2)^2 + (-1)^2}$	dM1	3.1a
	$=\sqrt{6}$ or 2.449	A1	1.1b
	> 2, so the octopus is not able to catch the fish F	A1ft	3.2a
		(7)	

Question	Scheme	Mar	ks
	9(a) Alternative 1		
	$\overrightarrow{AB} = \begin{pmatrix} 9\\ 4\\ 11 \end{pmatrix} - \begin{pmatrix} -3\\ 1\\ -7 \end{pmatrix} \begin{cases} = \begin{pmatrix} 12\\ 3\\ 18 \end{cases} \text{ or } \mathbf{d} = \begin{pmatrix} 4\\ 1\\ 6 \end{cases}$	M1	3.1a
	$\left\{ \overrightarrow{OA} = \begin{pmatrix} -3\\1\\-7 \end{pmatrix} \text{ and } \overrightarrow{AB} = \begin{pmatrix} 12\\3\\18 \end{pmatrix} \Rightarrow \right\} \begin{pmatrix} -3\\1\\-7 \end{pmatrix} \bullet \begin{pmatrix} 12\\3\\18 \end{pmatrix}$	M1	1.1b
	$\cos\theta \left\{ = \frac{\overrightarrow{OA} \bullet \overrightarrow{AB}}{\left \overrightarrow{OA}\right \cdot \left \overrightarrow{AB}\right } \right\} = \frac{\pm \left(\begin{pmatrix} -3 \\ 1 \\ -7 \end{pmatrix} \bullet \begin{pmatrix} 12 \\ 3 \\ 18 \end{pmatrix} \right)}{\sqrt{(-3)^2 + (1)^2 + (-7)^2} \cdot \sqrt{(12)^2 + (3)^2 + (18)^2}}$	dM1	1.1b
	$\left\{\cos\theta = \frac{-36+3-126}{\sqrt{59}.\sqrt{477}} = \frac{-159}{\sqrt{59}.\sqrt{477}}\right\}$		
	$\theta = 161.4038029$ or 18.59619709 or $\sin \theta = 0.3188964021$	A1	1.1b
	minimum distance = $\sqrt{(-3)^2 + (1)^2 + (-7)^2} \sin(18.59619709)$	dM1	3.1a
	$=\sqrt{6}$ or 2.449	A1	1.1b
	> 2, so the octopus is not able to catch the fish F	A1ft	3.2a
		(7)	
	9(a) Alternative 2		
	$\overrightarrow{AB} = \begin{pmatrix} 9\\ 4\\ 11 \end{pmatrix} - \begin{pmatrix} -3\\ 1\\ -7 \end{pmatrix} \left\{ = \begin{pmatrix} 12\\ 3\\ 18 \end{pmatrix} \right\} \text{ or } \mathbf{d} = \begin{pmatrix} 4\\ 1\\ 6 \end{pmatrix}$	M1	3.1a
	$\left\{ \overrightarrow{OF} = \mathbf{r} = \right\} \begin{pmatrix} -3 \\ 1 \\ -7 \end{pmatrix} + \lambda \begin{pmatrix} 12 \\ 3 \\ 18 \end{pmatrix}$	M1	1.1b
	$\left \overline{OF} \right ^2 = (-3 + 12\lambda)^2 + (1 + 3\lambda)^2 + (-7 + 18\lambda)^2$	dM1	1.1b
	$= 9 - 72\lambda + 144\lambda^{2} + 1 + 6\lambda + 9\lambda^{2} + 49 - 252\lambda + 324\lambda^{2}$		
	$= 477\lambda^2 - 318\lambda + 59$	A1	1.1b
	$= 53(3\lambda - 1)^2 + 6$	dM1	3.1a
	minimum distance = $\sqrt{6}$ or 2.449	A1	1.1b
	> 2, so the octopus is not able to catch the fish F	Alft	3.2a
		(7)	

Quest	ion Scheme	Marks	AOs
9(b	 e.g. Fish F may not swim in an exact straight line from A to B Fish F may hit an obstacle whilst swimming from A to B Fish F may deviate his path to avoid being caught by the octopus 	B1	3.5b
		(1)	
(c)	 (c) e.g. Octopus is effectively modelled as a particle – so we may need to look at where the octopus's mass is distributed Octopus may during the fish <i>F</i>'s motion move away from its fixed location at <i>O</i> 		3.5b
		(1)	
		(9 n	narks)
Quest	ion 9 notes:		
M1: A1: A1ft :	Attempts to find $\overrightarrow{OB} - \overrightarrow{OA}$ or $\overrightarrow{OA} - \overrightarrow{OB}$ or the direction vector d Applies $\overrightarrow{OA} + \lambda$ (their \overrightarrow{AB} or their \overrightarrow{BA} or their d) or equivalent Depends on previous M mark. Writes down (their \overrightarrow{OF} which is in terms of λ)•(their \overrightarrow{AB})=0. Can be implied Lambda is correct. e.g. $\lambda = \frac{1}{3}$ for $\overrightarrow{AB} = \begin{pmatrix} 12\\3\\18 \end{pmatrix}$ or $\lambda = 1$ for $\mathbf{d} = \begin{pmatrix} 4\\1\\6 \end{pmatrix}$ Depends on previous M mark. Complete method for finding $ \overrightarrow{OF} $ $\sqrt{6}$ or awrt 2.4 Correct follow through conclusion, which is in context with the question		
Altern	ative 1		
(a) M1:	Attempts to find $\overrightarrow{OB} - \overrightarrow{OA}$ or $\overrightarrow{OA} - \overrightarrow{OB}$ or the direction vector d		
M1:	Realisation that the dot product is required between \overrightarrow{OA} and their \overrightarrow{AB} . (o.e.)		
M1: A1:	Depends on previous M mark. Applies dot product formula between \overline{OA} and their \overline{AB} (o.e.) $\theta = \text{awrt 161.4 or awrt 18.6 or sin}\theta = \text{awrt 0.319}$		
M1: A1: A1ft :	Depends on previous M mark. (their OA)sin(their θ) $\sqrt{6}$ or awrt 2.4 Correct follow through conclusion, which is in context with the question		

Question 9 notes continued:	
Alternative 2	
(a)	
M1:	Attempts to find $\overline{OB} - \overline{OA}$ or $\overline{OA} - \overline{OB}$ or the direction vector d
M1:	Applies $\overrightarrow{OA} + \lambda$ (their \overrightarrow{AB} or their \overrightarrow{BA} or their d) or equivalent
M1:	Depends on previous M mark. Applies Pythagoras by finding $\left \overrightarrow{OF} \right ^2$, o.e.
A1:	$\left \overline{OF}\right ^2 = 477\lambda^2 - 318\lambda + 59$
M1:	Depends on previous M mark. Method of completing the square or differentiating their
	$\left \overrightarrow{OF} \right ^2$ w.r.t. λ
A1:	$\sqrt{6}$ or awrt 2.4
A1ft :	Correct follow through conclusion, which is in context with the question
(b) B1:	An acceptable criticism for fish F, which is in context with the question
(c) B1:	An acceptable criticism for the octopus, which is in context with the question