GCSE Mathematics (9-1) Practice Tests Set 8 – Paper 3H mark scheme

Question	Working	Answer	Mark	Notes
1		2, 20, 29	3	M2 for 3 number selected with at least two of the properties: mean = 17,
				median = 20, range = 27
				else M1 with one of these
				properties
				A1 in any order
Alt	ternative ternative			
1	$17 \times 3 \ (= 51)$	2, 20, 29	3	M1 method to find sum of 3 numbers
	$17 \times 3 - 20 \ (=31)$			M1 method to find sum of smallest
				and largest numbers
				A1 in any order
Alt	ernative			
1	x, 20, z	2, 20, 29	3	M1 use of different letters with 20
	or x, y, z and $y = 20$			shown as the middle value
	x + 20 + z			M1 an equation for the sum or for the
	$x + z = 31$ or $\frac{x + 20 + z}{3} = 17$ oe			difference of the two unknown
	or $z - x = 27$ or $x - z = 27$			numbers
				A1 in any order
				Total 3 marks

Ç	Question	Working	Answer	Mark			Notes
2	(a)(i)		67	1	B1		
	(ii)		<u>reason</u>	1	B1	method e.g. <u>alte</u>	B1or a fully correct shown in (i) ernate angles are equal fully correct method
	(b)	e.g. $180 - (67 + 60)$ or $120 - 67$ or $(180 - 67) - (180 - 120)$ or $113 - 60$ or $180 - 67 = 60 + y$ or $113 = 60 + y$ or $120 - y = 67$	53	2	M1	correct or <i>BFC</i> or <i>ABF</i>	calculation for y or equation in y, $C = 60^{\circ}$ and $BCF = 67^{\circ}$ $C = 60^{\circ}$ and $BCF = 67^{\circ}$ $C = 60^{\circ}$ and $ABC = 113^{\circ}$
							Total 4 marks
3	(a)	$(0 \times 2) + 1 \times 7 + 2 \times 3 + 3 \times 4 + 4 \times 3 + 5 \times 1$ (0 +) 7 + 6 + 12 + 12 + 5	42	2	M1		east 4 correct products with ntion to add.
·	(b)		2	1	B1	SC DI	101 2.1
	(0)		<u> </u>	1	DI		Total 3 marks
4		$\frac{6}{100}$ × 8.50 or 0.06 × 8.50 or 0.51 or 51p	9.01	3	M1		M2 for 1.06 × 8.50 oe
		8.50 + "0.51"			M1 A1	dep	
					AI		Total 3 marks

Question	Working	Answer	Mark		Notes
5 (a)		A correct enlargement in the correct position	2	M1 A1	Enlargment of given shape by SF 3 anywhere on grid or completely correct enlargement by SF 2 Fully correct
(b)		Rotation (Centre) (0,0) 90° clockwise oe	3	B1 B1 B1	O or origin -90°, 270° If more than one transformation mentioned then no marks
					Total 5 marks
6	2240 ÷ 805 (=2.78(26)) "0.7826" × 60 (= 46.95) or "2.7826" × 60 (= 166.95)	2 hrs 47 mins	3	M1 M1	Method to change "0.7826" to minutes or "2.7826" to minutes cao
				1	Total 3 marks
7	e.g. $7x = 4x - 13.5$ or $7x - 4x = -13.5$ or $7x + 13.5 = 4x$ or $4y - 7y = 54$ e.g. $y = 4 \times \text{``}-4.5\text{''}$ or $4x = \text{``}-18\text{''}$ or $7 \times \text{``}-4.5\text{''} - y = -13.5$	x = -4.5 $y = -18$	3	M1 M1	For correctly eliminating <i>y</i> or <i>x</i> dep on first M1 For method to find second
				A 1	variable
				A1	dep on first M1 for both answers <i>Total 3 marks</i>
					10tat 3 marks

Question	Working	Answer	Mark	Notes
_	cos $A = \frac{43}{70}$ (=0.6142) or sin $B = \frac{43}{70}$ (=0.6142) $A = \cos^{-1}\left(\frac{43}{70}\right) \text{ or } B = \sin^{-1}\left(\frac{43}{70}\right)$ $A = 52.1^{\circ} \text{ or } B = 37.9^{\circ}$	142	4	M1 $\cos B = \frac{55.23}{70}$, $\sin A = \frac{55.23}{70}$ M1 $A = \sin^{-1}(0.7890)$ $B = \cos^{-1}(0.7890)$ A1 $52^{\circ} - 52.1^{\circ}$ or $37.9^{\circ} - 38^{\circ}$ SC B1 If M0 M0 A0 award B1 for 52.1° or 37.9° not identified as A
				or as <i>B</i> B1 ft for an angle identified as <i>A</i> or <i>B</i> Correct bearing (142 – 142.1) Total 4 marks

9		$27a^6b^{12}$	2	B2 fully correct
				B1 for 2 of the three terms correc
				in a product.
				Total 2 mar
10	$-5-3 \tilde{N} 2p < 13-3 \text{ or}$ $-5-3 \tilde{N} 2p \text{ and } 2p < 13-3 \text{ or}$ $-\frac{5}{2} \tilde{N} \frac{2p+3}{2} < \frac{13}{2} \text{ or}$ $-\frac{5}{2} \tilde{N} \frac{2p+3}{2} \text{ and } p + \frac{3}{2} < \frac{13}{2}$	-4 Ñ <i>p</i> < 5	3	M2 Correctly subtracting 3 from each part of the inequality or dividing each term by 2 or $(p =)$ -4 and $(p =)$ 5 M1 for one end correct e.g. $2p \ddot{0} -5 -3$ or $\frac{2p+3}{2} < \frac{13}{2}$ or $(p =)$ -4 or $(p =)$ 5 A1 accept $p \ge -4$ and $p < 5$
				Total 3 mar

Question	Working	Answer	Mark	Notes
11	10 – 3	7	2	M1 10 and 3 identified
				A1
				Total 2 marks
12	e.g. $4(5x-2)+3(3-5x)=2\times12$ or	4.6	4	M1 For clear intention to multiply all
				terms by 12 or a multiple of 12 or
	$\frac{4(5x-2)}{12} + \frac{3(3-5x)}{12}$ or $\frac{4(5x-2) + 3(3-5x)}{12}$			to express LHS as a single fraction
	$\frac{12}{12} + \frac{12}{12} = 01 - \frac{12}{12}$			or as the sum of a pair of fractions
				with a common denominator of 12
	20 0.0 15 2 12			or a multiple of 12
	$20x - 8 + 9 - 15x = 2 \times 12$ or			M1 Expanding brackets correctly in a correct equation.
	$\frac{20x - 8 + 9 - 15x}{12} = 2 \text{ or } \frac{20x - 8}{12} + \frac{9 - 15x}{12} = 2$			correct equation.
	5x = 23 or 20x - 15x = 24 + 8 - 9 or			M1 For correct rearrangement of a
	20x - 15x = 24 - 1 oe			correct equation with fractions
				cleared and terms in x isolated.
				Aloe dep on at least M1
				Total 4 marks
13	$(1.4 \times 10^9) \div (3.5 \times 10^7)$ or $\frac{1400000000}{35000000}$	40	2	M1 or for an answer equivalent to
	35 000 000			4×10^n where <i>n</i> is an integer,
				e.g. 4, 4×10^{-2} , 4000 , 0.4×10^{3}
				A1 Accept 4×10^1 or 4×10
				Total 2 marks

Question	Working	Answer	Mark	Notes
14 (a)		$\frac{4}{7}$	2	B1 For left branch correct 0.57(142)
		$\frac{4}{9}, \frac{5}{9}, \frac{4}{9}, \frac{5}{9}$		B1 For right branches correct 0.44(4), 0.55(5)
(b)	$\frac{3}{7} \times \frac{4}{9}$	$\frac{4}{21}$	2	M1 ft their tree A1 ft their tree for fractions less than $1 \text{ oe } \frac{12}{63}, 0.19(0476)$
				Total 4 marks
15	$p^2 = \frac{w+4}{w-2}$	$w = \frac{2p^2 + 4}{p^2 - 1}$	4	M1 For squaring both sides
	$p^2(w-2) = w+4$	P		M1 For multiplying both sides by $(w-2)$
	$p^2w - w = 4 + 2p^2$ or $-4 - 2p^2 = w - p^2w$			M1 For isolating terms in w in a correct equation.
				A1 oe $w = \frac{-2p^2 - 4}{1 - p^2}$
				Total 4 marks

(b) $\frac{10}{50-0} (= 0.2), \frac{12}{240-180} (= 0.2),$ $\frac{8}{320-240} (= 0.1)$ $0 < t \tilde{N} 50 \text{ fd} = 0.2 \text{ (height 2 cm)}$ $180 < t \tilde{N} 240 \text{ fd} = 0.2 \text{ (height 2 cm)}$ $180 < t \tilde{N} 240 \text{ fd} = 0.2 \text{ (height 2 cm)}$ $150 < t \tilde{N} 80 \text{ or}$ $0.5 \text{ shown correctly on fd axis (1cm 0.1) or}$ $0.5 \text{ shown correctly on fd axis (1cm 0.1) or}$ $0.5 \text{ shown correctly on fd axis (1cm 0.1) or}$ $0.5 \text{ shown correctly on fd axis (1cm 0.1) or}$ 0.1 or 0.2 or 0.1 or 0.2 or	Question	Working	Answer	Mark		Notes
$\frac{8}{320-240} (= 0.2), \frac{12}{240-180} (= 0.2),$ $\frac{8}{320-240} (= 0.1)$ $0 < t \tilde{N} 50 \text{ fd} = 0.2 \text{ (height 2 cm)}$ $180 < t \tilde{N} 240 \text{ fd} = 0.2 \text{ (height 2 cm)}$ frequency density. Accept one bar drawn with correct height Accept $10 \times 10 = 100 \text{ or } 12 \times 10 = 120 \text{ or } 8 \times 10 = 80 \text{ small squares.}$ Al Three bars with correct widths and heights	16 (a)	$15 \div (80 - 50) (= 0.5)$	28, 18	2		one correct frequency for $80 < t \tilde{N} 120 \text{or} 120 < t \tilde{N} 180 \text{or}$ 0.5 shown correctly on fd axis (1cm = 0.1) or 10 small squares = 1 person oe
240 < t N 320 Id = 0.1 (neight 1 cm)	(b)	$\frac{8}{320-240} (= 0.1)$ $0 < t \tilde{N} 50 \text{ fd} = 0.2 \text{ (height 2 cm)}$	Correct bars drawn	2	A1	frequency density. Accept one bar drawn with correct height Accept $10 \times 10 = 100$ or $12 \times 10 = 120$ or $8 \times 10 = 80$ small squares. Three bars with correct widths and

Question	Work	ing	Answer	Mark		Notes
17 (a)	$(2x+1)(x+3) - 2 \times 3 (= (2x+1)(x+3) - 6 (= 45)$	45) or	$2x^2 + 7x - 48 = 0$ obtained correctly.	2	M1	A correct unsimplified expression or equation for shaded area
	$2x^2 + 6x + x + 3 - 6 = 45$				Aldep	Convincingly arriving at given equation. Expansion of brackets must be shown (3 or 4 terms).
(b)	$(x=)\frac{-7\pm\sqrt{7^2-4\times2\times-4}}{2\times2}$	$\frac{18}{8} \left(= \frac{-7 \pm \sqrt{49 + 384}}{4} \right)$	3.45	3	M1	Correct substitution into the quadratic formula, allow one sign error in numbers and + instead of ±; discriminant must not be simplified as far as 433
					M1	dep on first M1 for simplification of discriminant to $\sqrt{433}$ or $\sqrt{49+384}$
					A1	dep on first M1 3.45(216) Award A0 if negative root is not excluded.
						Total 5 marks
18	1000x = 278.7878 $10x = 2.7878$	100x = 27.8787 x = 0.2787	46 165 correctly shown	2	M1	Two appropriate equations selected for use. e.g. $1000x = 278.7878$ and $10x = 2.7878$
	$ 990x = 276 \\ x = \frac{276}{990} $	$99x = 27.6$ $x = \frac{27.6}{99} (= \frac{276}{990})$	tonioun shown		A1	e.g. $\frac{276}{990} = \frac{46}{165}$ or $\frac{27.6}{99} = \frac{46}{165}$ must be shown
						Total 2 marks

Question	Working	Answer	Mark		Notes
19	$\frac{(x+3)(x-3)-(x+4)(x-4)}{(x-3)(x-4)} \text{ or } $ $\frac{(x+3)(x-3)}{(x-3)(x-4)} - \frac{(x+4)(x-4)}{(x-3)(x-4)} \text{ oe } $	$\frac{7}{(x-3)(x-4)}$	3	M1	For a correct expression as one fraction or as two fractions with a common denominator
	$\frac{(x^2 - 3x + 3x - 9) - (x^2 - 4x + 4x - 16)}{(x - 3)(x - 4)} \text{ or }$			M1	Correct expansion of $(x-3)(x+3)$ and $(x-4)(x+4)$ in a single correct fraction
	$\frac{(x^2-9)-(x^2-16)}{(x-3)(x-4)} \text{ or } \frac{x^2-9-x^2+16}{(x-3)(x-4)} \text{ oe}$			A1	Accept $\frac{7}{x^2 - 7x + 12}$
			•		Total 3 marks
20	$\frac{5^{n^2+n^2-5n}}{5^{6+3}} (=125) \text{ or } 5^{n^2-6} \times 5^{n^2-5n-3} (=125) \text{ or } 5^{n^2+n^2-5n-9} (=125) \text{ or } 5^{n^2+n^2-5n} = 125 \times 5^9$	4	5	M1	For simplifying the LHS to a product or quotient of two single powers of 5 or for an equation with 125 and at most a single power of 5 on each side.
	$5^{n^2+n^2-5n} = 5^{12} \text{ or } 5^{n^2+n^2-5n-9} = 5^3 \text{ or } 5^{n^2+n^2-5n-9-3} = 5^0$			M1	For simplifying both sides to a single power of 5
	e.g. $2n^2 - 5n - 12$ (= 0) or $2n^2 - 5n = 12$			A1	A correct quadratic equation in n , simplified to three terms in any position.
	$(2n+3)(n-4)$ (=0) or $5+\sqrt{(-5)^2-4\times2\times-12}$ $5+\sqrt{25+96}$			M1	A correct factorisation or correct substitution into the quadratic formula or correctly completing the square.
	$n = \frac{5 \pm \sqrt{(-5)^2 - 4 \times 2 \times -12}}{2 \times 2} = \left(= \frac{5 \pm \sqrt{25 + 96}}{4} \right)$			A1	dep on correct quadratic equation Award A0 if negative root is not excluded.
					Total 5 marks

Question	Working	Answer	Mark	Notes
21	1/2 side of square = $11\cos72$ (= 3.3991) or $11\sin18$ side of square = $\frac{11\sin36}{\sin72}$ (= 6.7983) or $\sqrt{11^2 + 11^2 - 2 \times 11 \times 11 \times \cos(36)}$ or $2 \times 11\cos72$ ht of triangular face = $11\sin72$ (= 10.4616) or $11\cos18$ or $\sqrt{11^2 - ("3.3991")^2}$ diagonal of base = $\frac{"6.7983"}{\cos45}$ (= 9.6143) or $\frac{"6.7983"}{\sin45}$ or $\sqrt{("6.7983")^2 + ("6.7983")^2}$ 1/2 diagonal of base = $\frac{"3.3991"}{\cos45}$ (= 4.8071) or $\frac{"3.3991"}{\sin45}$ or $\sqrt{("3.3991")^2 + ("3.3991")^2}$ or $\frac{"6.7983"}{\sin45}$ or $\sqrt{("3.3991")^2 + ("3.3991")^2}$ or $\frac{"6.7983"}{\sin45}$ or $\frac{("3.3991")^2}{\sin45}$ or $\frac{("3.3991")^2}{\sin45}$	9.89	4	M1 For a complete correct method to find a length identified as side of square or ½ side of square. M1 For complete correct method to find a length identified as height of triangular face, or diagonal of base or ½ diagonal of base
	$OP = \sqrt{("10.4616")^2 - ("3.3991")^2} \text{ or } \sqrt{11^2 - (\frac{1}{2} \times "9.6143")^2} \text{ or } \sqrt{11^2 - ("4.8071")^2}$			M1 A correct method to find <i>OP</i> A1 Allow 9.8 – 9.95 SC B1 If no other marks are scored, award B1 for 11sin72 seen. Total 4 marks

Question	Working	Answer	Mark	Notes
22	$\frac{360}{5}$ (= 72) oe or $\frac{1}{2} \times \frac{(5-2)180}{5}$ (= 54) oe	16.5	4	M1 A correct method to find an angle in a triangle formed by two radii and a side of the pentagon.
	$\frac{72}{360} \times 2 \times \pi \times 6.8 \ (= \frac{68\pi}{25} = 8.54(5)) \text{ oe}$			M1 A correct method to find arc length
	$2 \times 6.8 \times \sin 36^{\circ}$ or $2 \times 6.8 \times \cos 54^{\circ}$ or	"		M1 indep
	$\sqrt{6.8^2 + 6.8^2 - 2 \times 6.8 \times 6.8 \times \cos 72^o}$ or			A correct method to find length of chord
	$\frac{6.8}{\sin 54^{\circ}} \times \sin 72^{\circ} \ (=7.99(3))$			A1 Allow 16.5 – 16.6
	1	1	1	Total 4 marks
23	11.45, 11.55, 5.05, 5.15	1001	4	M1 For a correct upper or lower bound for either number
	11.55³ (=1540 (.798875))			M1 Correct method to find upper bound for volume of box
	$\frac{4}{3} \times \pi \times 5.05^3$ (=539 (.53429))			M1 Correct method to find lower bound for volume of ball
				A1 dep on correct working
				Accept 1001 or answer in range [1001.26, 1001.34]
				Total 4 marks

Practice Tests Set 8 – Paper 3H

					Edexcel averages:	Mean score of students achieving grade						
Question	Skills tested	Mean score	Max score	Mean %	ALL	9	8	A/7	6	5	C / 4	3
Q01		2.15	3	72	2.15			2.35			1.19	
Q02ai		0.85	1	85	0.85			0.89			0.70	
Q02aii		0.31	1	31	0.31			0.31			0.15	
Q02b		1.37	2	69	1.37			1.44			0.65	
Q03a		1.73	2	87	1.73			1.86			1.41	
Q03b		0.45	1	45	0.45			0.42			0.18	
Q04		2.68	3	89	2.68			2.78			2.39	
Q05a		1.51	2	76	1.51			1.68			0.89	
Q05b		2.08	3	69	2.08			2.15			1.44	
Q06		2.17	3	72	2.17			2.28			1.29	
Q07		2.34	3	78	2.34			2.69			1.29	
Q08		2.41	4	60	2.41			2.70			0.47	
Q09a		1.47	2	74	1.47			1.58			0.87	
Q010		2.05	3	68	2.05			2.38			0.84	
Q11		1.08	2	54	1.08			1.03			0.41	
Q12		3.01	4	75	3.01			3.48			1.48	
Q13		1.68	2	84	1.68			1.80			1.29	
Q14a		1.85	2	93	1.85			1.93			1.64	
Q14b		1.62	2	81	1.62			1.88			0.92	
Q15		2.29	4	57	2.29			2.43			0.48	
Q16a		1.17	2	59	1.17			1.31			0.34	
Q16b		1.13	2	56	1.13			1.24			0.36	
Q17a		1.27	2	64	1.27			1.61			0.15	
Q17b		1.63	3	54	1.63			1.83			0.39	
Q18		0.77	2	39	0.77			0.72			0.07	
Q19		1.49	3	50	1.49			1.47		_	0.29	

Q20	1.78	5	36	1.78	1.12	0.06	
Q21	1.66	4	42	1.66	1.40	0.11	
Q22	1.75	4	44	1.75	1.65	0.14	
Q23	1.59	4	40	1.59	1.43	0.05	
	49.34	80	62	49.34	51.84	21.94	

Suggested Grade Boundaries based on peformance of students in Summer 2018

9	8	7	6	5	4	3
65	56	47	37	27	17	12