Practice Tests Set 7 – Paper 2H mark scheme – Spring 2018

Qn		Working	Answer	Mark	Notes
1		$3 \times (-2)^2 - (5 \times -2)$ or	22	2	M1 or 12 10 or 12 + 10 or 12 and -10
		$3(-2)^2 - 5(-2)$ or			A1 cao
		$3 \times (-2)^2 - 5 \times -2$ or			
		$3 \times 4 - 5 \times -2$			
2	(a)	$2.1 \div (1 + 2 + 3) (= 0.35)$ or $2.1 \div 6$	0.7	2	M1 allow 2.1 ÷ (1 + 2 + 3) × 3 (=1.05) for the method
		$2.1 \div (1+2+3) \times 2 \text{ or } 2.1 \div 6 \times 2$			mark
					A1 (accept 0.70)
	(b)	$6 \div 3 = 2 \text{ and } 2 \times 0.75 \text{ or } \frac{0.75}{3} \times 6$	1.5	2	M1 for a complete method
		3			A1 cao
		oe			
3			11	4	M1 for $3x + 2 = 87 - 2x$
					M1 for $5x + 32$
					M1 for $5x = 55$
					A1 cao
4	(a)		1160	3	B1
	(b)		1.16×10^{3}		B1 ft
	(c)		1200 (oe)		B1 ft

Qn		Working	Answer	Mark	Notes		
5	(a)	$\frac{4}{9}$	3		B1		
		$\left(\frac{4}{5}, \frac{1}{5}\right)$			B1		
		$\left \frac{3}{6},\frac{3}{6}\right $			B1		
	(b)	$\boxed{\frac{5}{9} \times \frac{4}{5} + \frac{4}{9} \times \frac{3}{6}}$			M1, M1		
		$\frac{2}{3}$			A1		
		$1-\frac{2}{3}$			M1		
		Conclusion			C1		
6	(a)		(x-4)(x+4) $(3x-1)^2$	1	B1		
	(b)		$(3x-1)^2$	2	B1 for $(3x - 1)(x)$ cao		
					B2 for $(3x - 1)^2$ cao		
	(c)	$\frac{(3x-1)(2x+3)}{(3x-1)^2} = \frac{(2x+3)}{(3x-1)}$	$\frac{2x+3}{3x-1}$		B1 for correct factorisation of numerator		
		$(3x-1)^2$ $(3x-1)$	3x - 1		M1 for cancelling of common factors		
					A1 cao		

	Working	Answer	Mark	Notes
			2	M1 $\frac{40}{360} \times 2 \times \pi \times 7$ oe A1 $4.8 - 4.9$
	$\frac{3w + 20}{200} = 1$ $3w + 20 = 200$	60	3	M1 $p = 1$ stated or used M1dep $3w + 20 = 200$ oe A1 cao
(a)		(1, 4)	3	B1
(b)		-0.4, 2.4		B1
(c)		3.75		B1 accept 3.7 – 3.8
(a)	$\frac{3}{10} \times \frac{5}{6}$		2	M1
		$\frac{15}{60}$ or $\frac{1}{4}$		A1 Accept $\frac{3}{12}$, $\frac{5}{20}$
(b)		24	2	B1 for multiple of 24
	(a) (b) (c) (a)	$\frac{3w + 20}{200} = 1$ $3w + 20 = 200$ (a) (b) (c) (a) $\frac{3}{10} \times \frac{5}{6}$	$\frac{3w + 20}{200} = 1$ $3w + 20 = 200$ (a) (b) $-0.4, 2.4$ (c) 3.75 (a) $\frac{3}{10} \times \frac{5}{6}$ $\frac{15}{60} \text{ or } \frac{1}{4}$	$\frac{3w + 20}{200} = 1$ $3w + 20 = 200$ (a) (b) (c) $\frac{3}{10} \times \frac{5}{6}$ (1,4) $-0.4, 2.4$ 3.75 (a) $\frac{15}{60} \text{ or } \frac{1}{4}$

Qn	Working	Answer	Mark	Notes
11	4(2y+1) = 3(y-2)	-2	4	M1 for clear intention to multiply both sides by 12 or by
				a multiple of 12
				eg $4(2y+1) = 3(y-2)$
				$2y + 1 \times 4 = y - 2 \times 3$
				$12 \times \frac{2y+1}{3} = 12 \times \frac{y-2}{4}$
	8y + 4 = 3y - 6			M1 for correct expansion of brackets or correct
				rearrangement of correct terms
				e.g. $8y - 3y = -6 - 4$, $\frac{8y + 4}{12} = \frac{3y - 6}{12}$
	5y = -6 - 4 or $8y - 3y = -10$			M1 for correct rearrangement with y terms on one side
	or $5y = -10$			and numbers on the other AND collection of terms on at
	or $-5y = 6 + 4$ or $3y - 8y = 10$ or $-5y = 10$ or $5y + 10 = 0$			least one side or for $5y + 10 = 0$ oe or for $\frac{5y + 10}{12} = 0$ oe
				A1 Award 4 marks if answer is correct and at least one
				method mark scored

Qn		Working	Answer	Mark	Notes
12	(a)	2 correct points plotted		2	
		e.g (0, 4) and (3, 0)			
		4x + 3y = 12 drawn			
	(b)			3	Correct region
					B2 for $x = 4$ and $y = -3$ drawn and consistent shading
					correct for at least two inequalities
					B1 for $x = 4$ and $y = -3$ drawn
13		$a^2 = 1 - \frac{b^2}{c^2}$		3	M1
		$a^{2} = 1 - \frac{b^{2}}{c^{2}}$ $c^{2}a^{2} = c^{2} - b^{2}$ OR $\frac{b^{2}}{c^{2}} = 1 - a^{2}$			
		OR $a^2 = \frac{c^2 - b^2}{c^2}$			
		$c^2 = \frac{b^2}{1 - a^2} \qquad \text{(isolating } c^2\text{)}$			M1 dep
		$c = \sqrt{\frac{b^2}{1 - a^2}} \text{(oe)}$			A1

Qn		Working	Answer	Mark	Notes
14				3	M1 correct coefficient
					M1 finding a and c or b and c
			$2x^2 + 7x + 4 = 0$		A1 cao
15	(a)		26	3	M1 for using values 0 and 6
					M1 for substituting values into trapezium rule,
					e.g. $\frac{1}{2} \times 2 \times ((0+8) + 2(4+5))$
					A1 cao
	(b)			1	C1 under-estimate as chords are under curve
	(c)		3.4 - 3.9	2	M1 tangent to curve drawn at $t = 8$
	(d)			1	C1 acceleration in m/s ²
16		Number of boys possible is 15	135		P1 Process to find the number of combinations
		Number of possible girls is 9			A1 for 135
		Each boy can be paired with 9 different girls			
		15 × 9			
			Tom with correct reason		C1 Convincing reason
			Correct reason		eg. correct calculation is $15 \times 14 \div 2$
17		a:b=30:48 or $b:c=48:200$		3	M1
		a:b:c=30:48:200	15:24:100		A1, A1

Qn	Working	Answer	Mark	Notes
18		300 and correct assumption	4	M1 for partial working, e.g. $\frac{20}{8}$ oe
				or 40% or $\frac{2}{5}$ or $20 \div 8$ or $\frac{8}{20}$ seen
				M1 for complete method e.g. $\frac{120 \times 20}{8}$ or 15×20
				or $\frac{120}{n} = \frac{8}{20}$ or $120 \div 0.4$ oe
				A1 cao
				C1 for a correct mathematical assumption, e.g. mark does not wear off or sample is random or population has not changed, etc

Qn	Working	Answer	Mark	Notes
19	e.g. $\left(\frac{1}{8 \times 10^{9n}}\right)^{\frac{1}{3}}$ or $(2 \times 10^{3n})^{-1}$ or			Correct first stage.
	$\frac{1}{\sqrt[3]{8\times10^{9n}}} \text{ or } \left(\sqrt[3]{8\times10^{9n}}\right)^{-1} \text{ or }$			
	$(8^{\frac{-1}{3}} \times 10^{\frac{-9n}{3}})$ or			
	$\left[\frac{1}{8^{\frac{1}{3}}} and \frac{1}{\left(10^{9n}\right)^{\frac{1}{3}}}\right] $ or			
	$\left[2^{-1} and (10^{3n})^{-1}\right]$ oe			
	e.g. $\frac{1}{2 \times 10^{3n}}$ or 0.5×10^{-3n} oe or			For dealing with $8^{-1/3}$ (shown as $1/2$ or 0.5) and $(10^{9n})^{-1/3}$ shown as 10^{-3n}
	$\[8^{\frac{-1}{3}} = 0.5 \text{ and } (10^{9n})^{\frac{-1}{3}} = 10^{-3n} \]$			
		$5\times 10^{-3n-1}$	3	$5 \times 10^{-(3n+1)}$

Qn		Working	Answer	Mark	Notes
20	(a)	$\frac{3}{6} \times \frac{3}{6}$		2	M1
			$\frac{9}{36}$		A1 cao
	(b)	$\frac{3}{6} \times \frac{3}{6}$		3	M1
		$\frac{1}{6} \times \frac{5}{6} + \frac{2}{6} \times \frac{3}{6}$			M1 for terms seen
		$\frac{1}{6} \times \frac{2}{6} + \frac{1}{6} \times \frac{3}{6} + \frac{2}{6} \times \frac{3}{6}$			
		$\frac{3}{6} \times \frac{3}{6} + \frac{1}{6} \times \frac{2}{6}$			
			$\frac{11}{36}$		A1

Suggested grade boundaries

	9	8	7	6	5	4
Paper 1H	68	60	52	44	35	26
Paper 2H	72	62	52	42	32	22
Paper 3H	58	50	42	34	26	18
Total	198	172	146	120	93	66