	1MA1 Pra	ctice papers Set 6: Pap	er 1H (R	egular) mark scheme – Version 1.0
Question	Working	Answer	Mark	Notes
3		graph	3	(Table of values)
	x -2 -1 0 1 2 3 4 5			M1 for at least 2 correct attempts to find points
	y 6 5 4 3 2 1 0 -1			by substituting values of x
				M1 ft for plotting at least 2 of their points
				(any points plotted from their table
				must be correct)
				A1 for correct line between $x = -2$ and $x = 5$
				or
				(No table of values)
				M2 for at least 2 correct points (and no incorrect
				points) plotted
				or line segment of $x + y = 4$ drawn
				(ignore any additional incorrect segments)
				(M1 for at least 3 correct points plotted with
				no more than 2 incorrect)
				A1 for correct line between $x = -2$ and $x = 5$
				or
				(Use of $y = mx + c$)
				M2 for at least 2 correct points (and no
				incorrect points) plotted

		1MA1 Pra	ctice papers Set 6: Pap	per 1H (R	egular) mark scheme – Version 1.0
Que	stion	Working	Answer	Mark	Notes
					(M1 for $y = 4 - x$ or line drawn with
					gradient of -1 or line drawn with a y
					intercept of 4 and a negative gradient)
					A1 for correct line between $x = -2$ and $x = 5$
4			Proof	4	M1 for setting up a correct equation in x ,
					eg. $3x - 2 = x + 1$
					M1 (dep) for a fully correct method to solve their equation or for $x = 1.5$
					M1 (dep) for ("1.5" + 1) \times 4 or (3 \times "1.5" – 2) \times 4
					or $(3 \times "1.5" - 2) \times 2 + ("1.5" + 1) \times 2$
					C1 (dep on M3) for completing the proof resulting in a perimeter of 10
					OR
					M1 for setting up a correct equation in x ,
					eg. $2(3x-2)+2(x+1)=10$
					M1 (dep) for a fully correct method to solve their equation or for $x = 1.5$
					M1 (dep) for "1.5" + 1 and $3 \times$ "1.5" - 2
					C1 (dep on M3) for completing the proof resulting in a justification that the shape is a square

	1MA1 Practice papers Set 6: Paper 1H (Regular) mark scheme – Version 1.0						
Que	stion	Working	Answer	Mark	Notes		
5			9	4	M1 for method to find area of one rectangle,		
					eg 15 × 8 (=120) or 15 × 11 (=165)		
					M1 (dep) for subtracting from/by given area,		
					eg (138 – "120") (=18) or "165" – 138 (=27)		
					M1 for final step from complete method shown,		
					eg 15 – "18"÷ 3 or "27" ÷ 3		
					A1 cao		
					OR		
					M1 for a correct expression for the area of one rectangle,		
					eg $(8+3) \times (15-x)$ or $8 \times x$		
					M1 (dep) for a correct equation		
					eg $(8+3) \times (15-x) + 8 \times x = 138$		
					M1 for correct method to isolate x , eg $3x = 27$		
					A1 cao		

		1MA1 Pra	ctice papers Set 6: Pap	er 1H (Re	egular) mark scheme – Version 1.0
Que	estion	Working	Answer	Mark	Notes
7	(a) (b)	$\frac{8}{20} + \frac{5}{20}$ $\frac{25}{8} \times \frac{2}{5}$	13/20 5/4	Mark	M1 for both fractions expressed with a suitable common denominator (multiple of 20) and at least one of the two fractions correct A1 for $\frac{13}{20}$ oe or M1 for $0.4 + 0.25$ A1 for 0.65 or M1 for table structure, all cells correct A1 for $13/20$ oe M1 for a correct method to convert to improper fractions or $\frac{(3\times 8+1)}{8}$ M1 (dep) for A1 for or $\frac{5}{4}$ or 1.25 (SC: B2 for 7.5)

		1MA1 Prac	ctice papers Set 6: Pap	er 1H (Re	egular) mark scheme – Version 1.0
Que	estion	Working	Answer	Mark	Notes
8	(a)	$\frac{3}{2+3+5}$	$\frac{3}{10}$	2	M1 for $\frac{3}{2+3+5}$ A1 for $\frac{3}{10}$ oe
	(b)	$60 \div 5 = 12$ $12 \times 2 =$	24	3	M1 for 60 ÷ 5 M1 for "12" × 2 A1 for 24 cao
		Alternative: Total sum = $60 \times 2 = 120$ Lillian = $\frac{2}{10}$ of $120 = 120 \times 2 \div 10$			Alternative: M1 for $60 \times 2 = 120$ seen M1 for $120 \times 2 \div 10$ A1 cao SC: B2 for 24, 36 and 60 SC: B1 for 36 on answer line
9	(a)	11 + 3 = 6y + 4y $14 = 10y$	1.4	2	M1 for collecting the y terms or the numbers on one side of equation,

		1MA1 Prac	ctice papers Set 6: Pap	er 1H (Re	egular) mark scheme – Version 1.0
Que	stion	Working	Answer	Mark	Notes
					eg $11 = 6y - 3 + 4y$ or $11 - 4y + 3 = 6y$ A1 for 1.4 or $\frac{14}{10}$ oe
	(b)	(x-8)(x+5)	8, -5	3	M2 for $(x-8)(x+5)$
					(M1 for $(x \pm 8)(x \pm 5)$
					A1 cao 8 and -5
		OR			OR
		$-(-3) \pm \sqrt{(-3)^2 - 4 \times 1 \times -40}$			M1 for correct substitution in formula of
		2×1			$a = 1, b = \pm 3 \text{ and } c = \pm 40$
		$\frac{3 \pm \sqrt{169}}{2} = \frac{3 \pm 13}{2}$			M1 for reduction to $\frac{3\pm\sqrt{169}}{2}$ A1 cao 8 and -5
10		$\left(\frac{6}{11} \times \frac{2}{10}\right) + \left(\frac{2}{11} \times \frac{6}{10}\right)$	24	4	B1 for $\frac{2}{10}$ or $\frac{6}{10}$ oe seen as the 2 nd probability
			110		M1 for $(\frac{6}{11} \times \frac{2}{10})$ or $(\frac{2}{11} \times \frac{6}{10})$ oe

	1MA1 Pra	ctice papers Set 6: Pap	er 1H (Re	egular) mark scheme – Version 1.0
Question	Working	Answer	Mark	Notes
	$=\frac{12}{110}+\frac{12}{110}$			M1 for $(\frac{6}{11} \times \frac{2}{10}) + (\frac{2}{11} \times \frac{6}{10})$ o.e.
				A1 for $\frac{24}{110}$ oe
				Tree diagram method
				B1 for $\frac{2}{10}$ or $\frac{6}{10}$ oe seen as the 2 nd probability
				M1 for $(\frac{6}{11}, \times \frac{2}{10})$ or $(\frac{2}{11}, \times \frac{6}{10})$ oe
				M1 for $(\frac{6}{11} \times \frac{2}{10}) + (\frac{2}{11} \times \frac{6}{10})$ oe
				A1 for $\frac{24}{110}$ oe
				Alternative scheme for replacement
				B0 for $\frac{6}{11}$ or $\frac{2}{11}$ seen as the 2 nd probability
				M1 for $(\frac{6}{11} \times \frac{2}{11})$ or $(\frac{2}{11} \times \frac{6}{11})$ oe
				M1 for $(\frac{6}{11} \times \frac{2}{11}) + (\frac{2}{11} \times \frac{6}{11})$ oe

		1MA1 Pra	ctice papers Set 6: Pap	er 1H (R	egular) mark scheme – Version 1.0
Que	stion	Working	Answer	Mark	Notes
					A0 for $\frac{24}{121}$ Special Cases SC: Award B2 for $\frac{24}{121}$ or $\frac{10}{110}$ oe or $\frac{20}{110}$ oe SC: Award B1 for $\frac{10}{121}$ or $\frac{20}{121}$
11		180 – <i>x</i>	$\frac{180 - x}{2}$ Or $90 - \frac{x}{2}$	2	M1 for $180 - x$ seen (eg $180 - x \div 2$) A1 correct expression
12	(a)		3	1	B1 for 3 (accept ±3, but not –3 alone)
	(b)		$\frac{1}{2}$	1	B1 for $\frac{1}{2}$ (= 0.5)
	(c)		4	1	B1 cao
	(d)		6	3	M1 for using $8 = 2^3$
					M1 for deriving a correct equation in m
					A1 cao

				1MA1 Pra	ctice papers Set 6: Pap	er 1H (R	egular) mark scheme – Version 1.0
Que	stion		Working	g	Answer	Mark	Notes
13			Boys	Girls	Comparison of	4	B1 for correct median for girls or boys
		Median:	115	112	data		B1 for any correct range or IQR
		Range:	41	33			C1 for a correct comparison of the medians
		IQR:	17	9			C1 ft for a correct comparison of the ranges or IQRs
							For the award of both C marks at least one of the comparisons made must be in the context of the question and all figures used for comparisons correct.
							OR
							B2 for an accurately drawn boxplot (superimposed)
							C1 for a correct comparison of the medians
							C1 for a correct comparison of the ranges or IQRs
							For the award of both C marks at least one of the comparisons made must be in the context of the question
14	(a)				820 000	1	B1 cao
	(b)				3.76×10^{-4}	1	B1 cao
	(c)				5×10^8	2	M1 for $2.3 \div 4.6 \times 10^{12-3}$ oe or 500 000 000 or 0.5×10^9
							A1 cao (accept 5.0×10^8
15					$\frac{3\mathbf{b} - \mathbf{c}}{\mathbf{c}}$	4	M1 for $\overrightarrow{CD} = \overrightarrow{CO} + \overrightarrow{OB} + \overrightarrow{BD}$
					4		M1 (indep) for $\overrightarrow{CO} + \overrightarrow{OB} = -\mathbf{c} + \mathbf{b}$

		1MA1 Pra	ctice papers Set 6: Pap	er 1H (R	egular) mark scheme – Version 1.0
Que	estion	Working	Answer	Mark	Notes
					or $\overrightarrow{BA} = -\mathbf{b} + 3\mathbf{c}$ M1 for $-\mathbf{c} + \mathbf{b} + \frac{1}{4}(-\mathbf{b} + 3\mathbf{c})$ A1 for $\frac{3\mathbf{b} - \mathbf{c}}{4}$ OR M1 for $\overrightarrow{CD} = \overrightarrow{CA} + \overrightarrow{AD}$ M1 (indep) for $\overrightarrow{CA} = 2\mathbf{c}$ or $\overrightarrow{AB} = -3\mathbf{c} + \mathbf{b}$ M1 for $2\mathbf{c} + \frac{3}{4}(-3\mathbf{c} + \mathbf{b})$ A1 for $\frac{3\mathbf{b} - \mathbf{c}}{4}$
16	(a) (b) (c)	$ \begin{array}{r} 1 - 0.3 \\ 0.3 + 0.5 \\ 0.2 \times 0.4 = 0.08 \end{array} $	0.7 0.8 Not independent	1 1 2	B1 0.7 oe B1 0.8 oe M1 for 0.2 × 0.4 (= 0.08)
		$0.08 \neq 0.06$	with reason		C1 for 0.08 and stating events not independent
17		$\frac{(2x-1)(x+5)}{(2x-1)(3x-1)}$	$\frac{x+5}{3x-1}$	3	M1 for factorizing the numerator correctly M1 for factorizing the denominator correctly A1 for $\frac{x+5}{3x-1}$
18		$ACB = 90^{\circ}$ angle in a semi circle $CBD = 180 - ACB$ cointerior angles add to 180°	45	4	B1 ACB = 90 (could be on the diagram) or 45 seen in a correct position on the diagram B1 answer of 45 B1 angle in a semicircle = 90

	1MA1 Practice papers Set 6: Paper 1H (Regular) mark scheme – Version 1.0									
Que	stion	Working	Answer	Mark	Notes					
		$CBD = 90^{\circ}$ $DCB = CDB =$ $(180^{\circ} - 90^{\circ}) \div 2$ base angles of an isosceles triangles			B1 base angles <u>isosceles</u> triangle are equal or <u>alternate angles</u> are equal					
19		triangles	D, C, B, A	3	B3 all correct (B2 2 or 3 correct) (B1 1 correct)					
20		$3 - \sqrt{2} + 3\sqrt{2} - \sqrt{2}\sqrt{2}$	$1+2\sqrt{2}$	2	M1 for 4 terms correct ignoring signs or 3 out of no more than 4 terms correct A1 cao					
21	(a)	$(a+1)^2 = a^2 + 2a + 1$ $\neq a^2 + 1$ OR Pick any non-zero value of a and show that LHS \neq RHS OR $(a+1)^2 = a^2 + 2a + 1$	Correctly shown	2	M1 for $(a + 1)^2 = a^2 + 2a + 1$ or $a^2 + a + a + 1$ (Expansion must be correct but may not be simplified) A1 for statement that $a^2 + 2a + 1 \neq a^2 + 1$ (eg. they are different) OR M1 for correct substitution of any integer into both expressions eg. $(2 + 1)^2$ and $2^2 + 1$					

	1MA1 Practice papers Set 6: Paper 1H (Regular) mark scheme – Version 1.0									
Question	Working	Answer	Mark	Notes						
	Solves $a^2 + 2a + 1 =$ $a^2 + 1$ to get $a = 0$ and			A1 for correct evaluation of both expressions and statement that they are not equal (eg. they are different)						
	indicates a contradiction			OR						
				$M1(a+1)^2 = a^2 + 2a + 1$ or $a^2 + a + a + 1$						
				A1 Solves $a^2 + 2a + 1 = a^2 + 1$ to get $a = 0$ and indicates a contradiction						
(b)	$a^2 + 2a + 1 + b^2 + 2b$	AG	3	M1 use of Pythagoras in either triangle – one of						
	$ \begin{array}{c} +1 \\ = c^2 + 2c \end{array} $			$a^2 + b^2 = c^2$ or $(a+1)^2 + (b+1)^2 = (c+1)^2$						
	$-c + 2c$ $+ 1$ But $a^2 + b^2 = c^2$			A1 $a^2 + 2a + 1 + b^2 + 2b + 1 = c^2 + 2c + 1$ and $a^2 + b^2 = c^2$						
				A1 $2a + 2b + 1 = 2c$						
	So 2a + 2b + 1 = 2c									
(c)	LHS is odd, RHS is even	Explanation	1	B1 eg. LHS is odd, RHS is even or one side is odd and the other side is even oe						

National performance data from Results Plus

	Original source of questions			ons			Mean score of students achieving grade:							
			Session			Max								
Qn	Spec	Paper	YYMM	Qn	Topic	score	ALL	A *	Α	В	С	D	Е	
1	2540	1F	0811	Q25	Constructions	2	0.15				0.36	0.12	0.05	
2	1380	1F	1106	Q27	Ratio	3	0.27				0.75	0.29	0.10	
3	1380	1F	1011	Q21	Graphs of linear equations	3	0.59				1.45	0.48	0.12	
4	5MM1	1H	1411	Q09	Solve linear equations	4	2.07	3.57	2.93	2.47	1.52	0.77	0.20	
5	1MA0	1H	1411	Q07	Perimeter and area	4	1.38	3.85	3.56	2.93	1.51	0.68	0.29	
6	1380	1H	906	Q10	Compound measures	3	2.20	2.86	2.57	2.20	1.88	1.49	0.99	
7	5MM1	1H	1311	Q13	Fractions	5	2.87	4.72	4.20	3.32	2.20	0.93	0.12	
8	1387	31	0711	Q13	Ratio	5	2.48			4.30	3.07	1.65	0.78	
9	5MM1	1H	1211	Q15	Solve quadratic equations	5	2.32	4.94	4.63	3.62	1.47	0.47	0.00	
10	5MM1	1H	1206	Q20	Selection with or without replacement	4	1.68	3.65	2.88	1.74	0.51	0.17	0.00	
11	5MM1	1H	1111	Q11	Angles	2	0.80	1.50	1.73	0.98	0.18	0.00	0.00	
12	5MM1	1H	1411	Q17	Index laws	6	2.32	5.70	3.87	2.33	1.30	0.52	0.10	
13	1MA0	1H	1611	Q18	Box plots	4	Data to be added January 2017							
14	1MA0	1H	1303	Q16	Standard form	4	1.18	3.27	2.48	1.68	0.91	0.35	0.09	
15	5MM1	1H	1411	Q23	Vectors	4	1.10	3.85	2.12	1.03	0.17	0.03	0.00	
16	5MM1	1H	1211	Q23	Venn diagrams	4	1.03	1.82	1.33	0.87	0.57	0.40	0.00	
17	5MM1	1H	1411	Q22	Simplify algebraic fractions	3	0.70	2.96	1.68	0.37	0.02	0.00	0.00	
18	1380	1H	1111	Q19	Circle theorems	4	0.93	3.21	2.33	1.39	0.55	0.18	0.11	
19	1380	1H	1203	Q20	Graphs of trigonometric functions	3	0.67	2.14	1.26	0.70	0.38	0.23	0.19	
20	1MA0	1H	1411	Q21	Surds	2	0.28	1.85	1.58	0.83	0.16	0.03	0.01	
21	1380	1H	1203	Q24	Algebraic proof	6	0.54	2.55	1.27	0.56	0.16	0.03	0.02	
					TOTAL	80								