	1MA1 Practice papers Set 5: Paper 3H (Regular) mark scheme – Version 1.0							
Que	stion	Working	Answer	Mark	Notes			
1.	(a)		x = 3 drawn	1	B1 for $x = 3$ drawn [Note: each line drawn must be a single line segment satisfying $x = 3$]			
	(b)		y = x drawn	1	B1 for $y = x$ drawn [Note: each line drawn must be a single line segment satisfying y = x]			
	(c)	Gradient = $\frac{3-0}{02}$	1.5	2	M1 for a method to find the gradient of the given line A1 for 1.5 oe			
2.			Points plotted at (5, 6), (15, 9), (25, 8), (35, 7), (45,5) and joined with line segments	2	 B2 for correct plotting of 5 points and joining with line segments (B1 for points plotted correctly at midpoints of intervals OR joining points with line segments at the correct heights and consistent within the class interval (including end values) OR correct frequency polygon with one point incorrect OR correct frequency polygon with first and last point joined) NB Ignore any histogram drawn and any part of frequency polygon outside range of first and last points plotted 			

	1MA1 Practice papers Set 5: Paper 3H (Regular) mark scheme – Version 1.0						
Que	stion	Working	Answer	Mark	Notes		
3.		$180 \times 365 = 65700$	Decision (Should	5	Per year		
		$65700 \div 1000 = 65.7$	have a water meter installed)		M1 for $180 \times 365' (= 65700)$ M1 for $65700' \div 1000 (= 65.7 \text{ or } 65 \text{ or } 66)$		
		$5993.154 \div 100 + 28.20$			M1 for " 65.7 " × 91.22 (=5 993)		
		= 88.13			A1 for answer in range (£)87 – (£)89 C1(dep on at least M1) for conclusion following from working seen		
		D U C T 366 65880 6010 88.30 365 65700 5993 88.13 65000 5929 87.49 66000 6020 88.40 364 65520 5976 87.96 360 64800 5911 87.31 336 60480 5517 83.37			OR (per day) M1 for 107 ÷ '365' (=0.293) M1 for 180 ÷ 1000 × 91.22 (=16.4196) M1 for 28.2 ÷ '365' + '0.164196' (units must be consistent) A1 for 29 – 30(p) and 24– 24.3(p) oe C1(dep on at least M1) for conclusion following from working		

	1MA1 Practice papers Set 5: Paper 3H (Regular) mark scheme – Version 1.0						
Que	stion	Working	Answer	Mark	Notes		
					seen		
4.	(a)	15 ÷ 60	25p	2	M1 for 15 ÷ 60 oe or clear attempt to find gradient A1 for £0.25 or 25p		
	(b)	0.2 × 90 (=18) From graph 90 units costs £19	Yes as cost will be lower	3	M1 for Tariff B price for 90 units 20×90 (=1800) or 0.2×90 (= 18) OR Tariff A price per unit $\frac{1900}{90}$ or $\frac{19}{90}$ B1 for reading from Tariff A graph at 90 units or £19 C1 for £18 and £19 with 'yes' or 21.(1)p with 'yes'		
					OR M1 for drawing the correct line (for Tariff B) through the origin with gradient 0.2 B1 for reading from Tariff A graph at 90 units or 19 seen		

	1MA1 Practice papers Set 5: Paper 3H (Regular) mark scheme – Version 1.0							
Que	stion	Working	Answer	Mark	Notes			
					C1 for £18 and £19 with 'yes'			
5.		Some area examples:	550 ft ²	4	M1 Using the correct dimensions to calculate an area			
		$\frac{1}{2} \times 12 \times 25 = 150$			M1 Complete method to find the area of the grass			
		8× 25 = 200			A1 cao			
		$\frac{1}{2} \times 11 \times 25 = 137.5$			C1 (dep on a previous M mark) correct units communicated			
		5 × 25 = 125						
		$\frac{1}{2} \times 21 \times 25 = 262.5$						
		$\frac{1}{2} \times 44 \times 25 = 550$						
		$\frac{1}{2} \times 70 \times 25 = 875$						
		$40 \times 25 = 1000$						

	1MA1 Practice papers Set 5: Paper 3H (Regular) mark scheme – Version 1.0							
Que	stion	Working	Answer	Mark	Notes			
6.	(a)	p^{5+4}		1	B1 (accept p^{5+4})			
	(b)	q^{5-2}		1	B1 (accept q^{5-2})			
	(c)			2	B2 (accept $2t^0u$, $2t^0u^1$ oe)			
					(B1 for 2 correct terms from 2, t^0 and u oe eg u^1)			
	(d)			2	B2 cao			
					(B1 for 2 correct terms from 3, w and y^3 oe)			
					NB: accept w^1 for w .			
	(e)		r^{-2} r^{0} $r^{\frac{1}{2}}$ r r^{2}	2	B2 cao			
					(B1 for any 4 in relative correct order, or all correct but in reverse order)			
7.			64%	4	M1 for $0.8 \times 8000 (= 6400)$ oe			
					M1 for $0.8 \times 0.8 \times 8000$ (=5120) oe			
					M1 (dep on M2) for (= 64)			

	1MA1 Practice papers Set 5: Paper 3H (Regular) mark scheme – Version 1.0						
Que	estion	Working	Answer	Mark	Notes		
					C1 for 64% from correct working		
8.		578 ÷ 0.85	680	3	M1 for 100% – 15% (=85%) or 1 – 0.15 (=0.85) oe M1 for 578 ÷ 0.85 A1 cao		
9.	(a)	Bar of height 5cm (5–10)	12, 6 Height 5cm	2	M1 for frequency density calculation (implied by one answer), or 1 cm ² = 2 (trains), or fd = 0.5 or 8 cm ² = 16 A1 both 12 and 6 M1 for frequency density calculation (implied by one correct		
		Bar of height 1cm (30–50)	Height 1cm		bar) or $1 \text{ cm}^2 = 2$ (trains) or $\text{fd} = 0.5$ A1 for bar of height 5cm (5 to 10) AND for bar of height 1 cm (30 to 50) 8 cm ² = 16		
10.		$y^{2} = \frac{2x+1}{x-1}$ $y^{2} (x-1) = 2x + 1$ $y^{2} x - y^{2} = 2x + 1$	$x = \frac{y^2 + 1}{y^2 - 2}$	4	M1 squaring both sides to get a correct equationM1 removing denominator to get a correct equationM1 correctly gathering <i>x</i>s on one side of a correct equation with non-<i>x</i> terms on the other side		

	1MA1 Practice papers Set 5: Paper 3H (Regular) mark scheme – Version 1.0						
Question	Working	Answer	Mark	Notes			
	$y^2 x - 2x = y^2 + 1$			A1			
11.		9.54	3	M1 for $(BC^2=)$ 52 + 62 - 2 × 5 × 6 × cos 120° M1 for correct order of evaluation or 91 A1 for 9.53 - 9.54			
12.		Rotation, 180°, centre (-1, 1)	3	 B1 for rotation B1 for 180° (accept half turn) B1 for (-1, 1) (SC B1 for triangle with vertices (-3, 0) (-5, 0) (-3, -4) drawn) OR B1 for enlargement B1 for scale factor - 1 B1 for (-1, 1) (NB: a combination of transformations scores no marks) 			

	1MA1 Practice papers Set 5: Paper 3H (Regular) mark scheme – Version 1.0							
Que	estion	Working	Answer	Mark	Notes			
13.		$4(x + 4) = 4x + 16$ $4(3x + 4) = 12x + 16$ $4x + 16 = \frac{2}{3} (12x + 16)$	51⁄3	5	M1 for a correct expression for at least one perimeter. M1 for " $4x + 16$ " = $\frac{2}{3}$ "($12x + 16$)" oe M1 for $12x + 48 = 24x + 32$ or $4x + 16 = 8x + \frac{32}{3}$ oe A1 for $\frac{4}{3}$ B1 ft for " $\frac{4}{3}$ " + 4			
		12x + 48 = 24x + 32			OR 2			
		12x = 16			M2 for $x + 4 = \frac{2}{3}(3x + 4)$ M1 for $3x + 12 = 6x + 8$ or $x + 4 = x + \frac{8}{3}$ oe A1 for $\frac{4}{3}$ B1 ft for " $\frac{4}{3}$ " + 4			

	1MA1 Practice papers Set 5: Paper 3H (Regular) mark scheme – Version 1.0								
Que	stion	Working	Answer	Mark	Notes				
14.	(a) (b)	$F = \frac{k}{x^2}$ 0.8 = $\frac{k}{5^2}$ or $k = 20$ $x^2 = \frac{20}{320}$ or $x = \sqrt{\frac{20}{320}}$	$F = \frac{20}{x^2}$	3	M1 k must be a letter not a number M1 for substitution (implies first M1) A1 (Award 3 marks for $F = \frac{k}{x^2}$ and $k = 20$ stated anywhere (even in (b)) unless contradicted by later work) M1 ft if $k \neq 1$ for correct rearrangement				
			0.25 oe		NB. The only ft is for the value of k in $F = \frac{k}{x^2}$ A1 cao (ignore ±)				

	1MA1 Practice papers Set 5: Paper 3H (Regular) mark scheme – Version 1.0							
Que	stion	Working	Answer	Mark	Notes			
15.			22.5	3	M1 for $\frac{1}{2} \times 7 \times 5 \times \sin 40$ or $\frac{1}{2} \times 7 \times 5 \times \sin(180 - 40)$ M1 (dep M1) for doubling the area of the triangle A1 for 22.4 – 22.5 OR M1 for complete method to find height of parallelogram, e,g. 5 sin 40° M1 (dep M1) for complete method to find the area of the parallelogram, e.g. 7 × 5sin 40° A1 for 22.4 – 22.5			
16.	(i)		250	4	M1 for 50/8 (=6.25) or 8/50 (= 0.16) or 40/8 (=5) or 8/40 (= 0.2) or $\frac{50}{n} = \frac{8}{40}$ oe			

	1MA1 Practice papers Set 5: Paper 3H (Regular) mark scheme – Version 1.0						
Que	estion	Working	Answer	Mark	Notes		
	(ii)		assumption		M1 for 50 × 40 ÷ 8 or 50 × 5 or 6.25 × 40 or 50 ÷ 0.2 oe A1 cao B1 for correct mathematical assumption, e.g. fixed population, takes random sample		
17.		Growth factor = $\frac{100 + n}{100}$ $500 \times \frac{100 + n}{100} \times \frac{100 + n}{100}$ = 700 $(100+n)^2 = 14000$ 100 + n = 118.32 n = 18.32 After 5 years, 500 × 1.1832^5 OR $500 \times 1.1 \times 1.1 = 605$ too low	1159 or 1160	5	M1 for introducing growth factor M1 for $500 \times \frac{100 + n}{100} \times \frac{100 + n}{100} = 700$ A1 for 18.32 or 118.32 M1 for 500×1.1832^5 A1 for 1158 or 1159 or 1160 (accept 1143 or 1144) OR M1 for any trial evaluated and compared with 700 M1 for trials above and below		

	1MA1 Practice papers Set 5: Paper 3H (Regular) mark scheme – Version 1.0							
Que	stion	Working	Answer	Mark	Notes			
		$500 \times 1.2 \times 1.2 = 720$ too big			A1 for 1.1832 or better			
		500 × 1.18 × 1.18 = 696.2			M1 for 500×1.1832^5			
		too low			A1 for 1158 or 1159 or 1160 (accept 1143 or 1144)			
		500 × 1.19 × 1.19 = 708.05 too big			OP			
		500 × 1.183 × 1.183 = 699.745			OK .			
		too low			M1 for introducing a growth factor			
		500 × 1.184 × 1.184 = 700.9			M1 for $500r^2 = 700$			
		too big			A1 for $(r=) \sqrt{\frac{700}{500}}$ oe or 1.18(3)			
		500 × 1.1832 × 1.1832 = 699.98			M1 for $500 \times \left(\sqrt{\frac{700}{500}}\right)^5$ oe			
		After 5 years, 500 × 1.1832 ⁵			A1 for 1158 or 1159 or 1160 (accept 1143 or 1144)			
18.	(c)	$\frac{2(x+3) - (x-4)}{(x-4)(x+3)}$	$\frac{x+10}{(x-4)(x+3)}$	3	M1 for common denominator of $(x - 4)(x + 3)$			

1MA1 Practice papers Set 5: Paper 3H (Regular) mark scheme – Version 1.0										
Question		Working	Answer	Mark	Notes					
		$=\frac{2x+6-x+4}{(x-4)(x+3)}$			M1 for $\frac{2(x+3)}{(x-4)(x+3)} - \frac{(x-4)}{(x-4)(x+3)} \frac{2(x+3) - (x-4)}{(x-4)(x+3)}$ oe condone missing brackets around $x - 4$ A1 for $\frac{x+10}{(x-4)(x+3)}$ or $\frac{x+10}{x^2 - x - 12}$					
19.		$\frac{18}{30} \times \frac{12}{29} + \frac{7}{30} \times \frac{23}{29} + \frac{5}{30} \times \frac{25}{29}$ or $\frac{18}{1} \times \frac{17}{29} + \frac{7}{30} \times \frac{6}{29} + \frac{5}{30} \times \frac{5}{29}$ $\frac{4}{\times 29}$ or $\frac{4}{\times 29}$ or $\frac{18}{30} \times \frac{7}{29} + \frac{18}{30} \times \frac{5}{29} + \frac{7}{30} \times \frac{18}{29}$ $\frac{7}{5} \times \frac{5}{5} \times \frac{18}{18} \times \frac{5}{5} \times \frac{7}{29}$	<u>502</u> 870	4	 B1 for a second 'branch' probability seen (could be seen in a tree) M1 for a product of any first and second stage correct probabilities M1 for a complete method to find the required probability A1 for ⁵⁰²/₈₇₀ oe Note if decimals used they must be correct to 2 decimal places Special case with replacement: 					
		+30^29 +30*29+30*29			B2 for $\frac{502}{900}$ oe B0					

1MA1 Practice papers Set 5: Paper 3H (Regular) mark scheme – Version 1.0									
stion	Working	Answer	Mark	Notes					
				$M1 \frac{18}{30} \times \frac{12}{30} \text{ or } \frac{7}{30} \times \frac{23}{30} \text{ or } \frac{5}{30} \times \frac{25}{30}$					
				$M1 \frac{18}{30} \times \frac{12}{30} + \frac{7}{30} \times \frac{23}{30} + \frac{5}{30} \times \frac{25}{30}$					
				A0					
		x < -4, x > 2.5	4	M1 for rearranging to give $2x^2 + 3x - 20 > 0$					
				M1 for method to solve $2x^2 + 3x - 20 = 0$					
				M1 for establishing critical values 2.5 and -4					
				A1 $x < -4, x > 2.5$					
	stion	1MA1 Pra stion Working	IMA1 Practice papers Set 5: Pap stion Working Answer	IMA1 Practice papers Set 5: Paper 3H (Restanding to the set of the					

National performance data from Results Plus

	Origina	l source o	of questior	າຣ			Mean score of students achieving grade:						
			Session			Max							
Qn	Spec	Paper	YYMM	Qn	Торіс	score	ALL	A *	Α	В	С	D	E
1	1MA0	2F	1303	Q22	Graphs of linear equations	2	0.08				0.21	0.04	0.01
2	5MB1	1F	1306	Q16	Frequency polygon	2	0.63				1.27	0.92	0.64
3	1MA0	2F	1206	Q28	Compound measures	5	1.03				2.54	1.20	0.46
4	5AM1	1H	1306	Q09	Conversion graphs	5	3.43	4.72	4.21	3.59	2.75	1.79	0.38
5	5AM1	1H	1206	Q07	Area	4	2.07	3.57	2.94	2.09	1.12	0.58	0.00
6	1380	2H	1006	Q22	Index laws	8	4.70	7.21	5.74	4.64	3.72	2.60	1.68
7	5MM2	2H	1311	Q20	Ratio	4	2.45	3.77	3.48	2.98	1.89	0.55	0.04
8	5AM1	1H	1306	Q19	Reverse percentages	3	1.75	2.96	2.71	1.92	0.90	0.25	0.00
9	1380	2H	1006	Q25	Histograms and grouped frequency	4	1.97	3.71	2.94	1.86	1.08	0.63	0.34
10	4MA0	1H	1405	Q17	Rearranging equations	4	1.82	2.91	1.64	0.87	0.34	0.09	0.02
11	5MM2	2H	1311	Q23	Sine and cosine rule	3	1.27	2.97	2.55	1.52	0.32	0.02	0.00
12	1380	2H	1203	Q17	Transformations	3	0.97	2.62	1.96	1.20	0.53	0.22	0.15
13	5AM1	1H	1111	Q14	Solve linear equations	5	1.25	4.83	1.43	0.70	0.36	0.57	1.00
14	4MA0	2H	1405	Q17	Direct and inverse proportion	5	3.11	4.62	3.29	1.57	0.53	0.13	0.04
15	1MA0	2H	1506	Q23	Trigonometry	3	0.69	2.58	1.78	0.76	0.15	0.02	0.00
16	5MB1	1H	1311	Q17	Estimating populations	4	1.04	3.76	2.46	1.39	0.60	0.38	0.00
17	5AM2	2H	1111	Q25	Graphs of exponential functions	5	0.73	5.00	1.29	0.67	0.00	0.00	0.00
18	1380	2H	1111	Q23c	Algebraic fractions	3	0.28	2.04	1.03	0.30	0.04	0.01	0.00
19	1MA0	2H	1511	Q25	Probability	4	0.34	3.45	2.77	1.48	0.34	0.06	0.01
20	NEW				Inequalities	4							
						80							