Question	Working	Answer	Mark	Notes
1	6 - 12x or		3	M1 for expansion of bracket on the LHS or
	$2 - 4x = \frac{5}{3} - \frac{8}{3}x$			dividing the RHS by 3 with two terms
	6-5=12x-8x or $1=4x$ or			M1 ft (dep on 4 terms) for terms in <i>x</i> on one
	-12x + 8x = 5 - 6 oe or $-4x = -1$ or			side of equation; number terms on the other
	$\frac{8}{3}x - 4x = \frac{5}{3} - 20e \text{ or } 2 - \frac{5}{3} = -\frac{8}{3}x + 4x \text{ oe}$			
	Working required	1		A1 oe dep on M1 awarded
		4		
				Total 3 marks

Question	Working	Answer	Mark	Notes
2		$ \begin{array}{c} $	3	B3 Fully correct (B2 for 2 or 3 'regions' correct, B1 for one 'region' correct)
				Total 3 marks

Question	Working		Answer	Mark		Notes
3	eg $5x + 4y = -2$ + $8x - 4y = 17.6$ ($13x = 15.6$) eg $[x = \frac{4.4 + y}{2}]$ oe $5\left(\frac{4.4 + y}{2}\right) + 4y = -2$ oe	eg $10x + 8y = -4$ - 10x - 5y = 22 (13y = -26) eg [y = 2x - 4.4] oe 5x + 4(2x - 4.4) = -2 oe		3	wi ari the of or co	ultiplication of one or both equation(s) ith correct operation selected (allow one ithmetic error) (if $+$ or $-$ is not shown en assume it is the operation that at least 2 The 3 terms have been calculated for) orrect rearrangement of one equation with bstitution into second
	eg 5 × "1.2" + 4 y = -2 or 2 × "1.2" - y = 4.4	eg $5x + 2 \times \text{``}-2\text{''} = 4.4$ or 2x - ``-2'' = 4.4			fir un su or	ep on previous M1 but not on a correct rst value) correct method to find second known – this could be a correct bstitution into one of the equations given calculated or starting again with the same yle of working as for the first method mark
	Working required		x = 1.2 $y = -2$			$e eg x = \frac{6}{5}$ r both solutions dependent on first M1
						Total 3 marks

Question	Working	Answer	Mark	Notes
4 (a)		9	1	B1 oe
		10		
(b)		-6	1	B1
				Total 2 marks

Question	Working	Answer	Mark	Notes
5 (a)		$\frac{2}{7}$	2	B1 for correct probabilities for the first card
		$\frac{1}{9}, \frac{1}{9}$		Allow equivalent probabilities e.g 0.2
		1 7 2 6		B1 for correct probabilities for the second card
		$\frac{1}{8}, \frac{7}{8}, \frac{2}{8}, \frac{6}{8}$		Allow equivalent probabilities
(b)	" $\frac{2}{9}$ "×" $\frac{1}{8}$ " or		2	M1ft
	$\overline{9}$ $\widehat{8}$ $\overline{8}$			(All probabilities must be less than 1)
	$\frac{1-\frac{2}{9}\times\frac{7}{8}-\frac{7}{9}\times\frac{2}{8}-\frac{7}{9}\times\frac{2}{8}-\frac{7}{9}\times\frac{6}{8}}{Correct answer scores full marks (unless from obvious)}$			
		1		A1ft oe probability must be less than 1
	incorrect working)	36		Allow equivalent decimal to at least 2 sf
				(truncated or rounded) for $\frac{1}{36}$ (= 0.027(77))
(c)	" $\frac{2}{9}$ ""×" $\frac{7}{8}$ " or " $\frac{7}{9}$ "×" $\frac{2}{8}$ "oe or		3	M1ft (All probabilities must be less than 1)
	$\frac{2}{9} \times \frac{7}{8} \text{ or } \frac{7}{9} \times \frac{2}{8} \text{ oe or}$ $\frac{2}{9} \times \frac{1}{8} \text{ and } \frac{7}{9} \times \frac{6}{8} \text{ oe or}$			
	" $\frac{1}{36}$ "and " $\frac{7}{9}$ "×" $\frac{6}{8}$ "oe			
	" $\frac{1}{36}$ "and " $\frac{7}{9}$ "×" $\frac{6}{8}$ "oe " $\frac{2}{9}$ "×" $\frac{7}{8}$ "+" $\frac{7}{9}$ "×" $\frac{2}{8}$ " or 2× $\frac{14}{72}$ oe or			M1ft
	$1 - \frac{2}{9} \times \frac{1}{8} - \frac{7}{9} \times \frac{6}{8}$ oe or			
	$1 - "\frac{1}{36}" - "\frac{7}{9}" \times "\frac{6}{8}"$ oe			
	Correct answer scores full marks (unless from obvious	$\frac{7}{18}$		A1ft oe probability must be less than 1
	incorrect working)	18		Allow equivalent decimal to at least 2 sf
				(truncated or rounded) for $\frac{7}{18}$ (= 0.38(88))
				Total 7 marks

$\frac{1}{7}, \frac{1}{8} = \frac{1}{9}$ $\frac{1}{8}, \frac{1}{8} = \frac{1}{8}$ $\frac{1}{8}, \frac{1}{8} = \frac{1}{1}, \frac{1}{8}, \frac{1}{8} = \frac{1}{1}, \frac{1}{8}, \frac{1}{8},$	Question	Working	Answer	Mark	Notes
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	6	$\frac{26}{7}, \frac{13}{8}$ oe		3	need for \div or \times may be equivalent to those given eg $\frac{52}{14}$, $\frac{26}{16}$ etc. A student could invert $\frac{13}{8}$ and show multiplication - as shown in the 2nd M1, thi mark is then implied.
$cg - \frac{7}{7} \times \frac{13}{13} = \frac{91}{91} = \frac{7}{7} = 2\frac{7}{7}$ or $\frac{26}{7} \times \frac{8}{13} = \frac{208}{91} = 2\frac{26}{91} = 2\frac{2}{7}$ or $\frac{26^2}{7} \times \frac{8}{13^{-1}} = \frac{16}{7} = 2\frac{2}{7}$ or $\frac{208}{56} \div \frac{91}{56} = \frac{208}{91} = \frac{16}{7} = 2\frac{2}{7}$ or correct working to $\frac{16}{7}$ and writing		$\frac{26}{7} \times \frac{8}{13}$ oe or eg $\frac{208}{56} \div \frac{91}{56}$			fractions with denominators that are a common multiple of 7 and 8 eg $\frac{208}{200} \div \frac{91}{200}$
27 7 working required		or $\frac{26}{7} \times \frac{8}{13} = \frac{208}{91} = 2\frac{26}{91} = 2\frac{2}{7}$ or $\frac{26^2}{7} \times \frac{8}{43^1} = \frac{16}{7} = 2\frac{2}{7}$ or $\frac{208}{56} \div \frac{91}{56} = \frac{208}{91} = \frac{16}{7} = 2\frac{2}{7}$ or correct working to $\frac{16}{7}$ and writing $2\frac{2}{7} = \frac{16}{7}$ (usually on the first line of working)	shown		A1 dep on M2 NB: use of decimals scores no marks (unless used as a check)
					Total 3 mark

Question	Working	Answer	Mark	Notes	
7 (a)		1	1	B1	
(b)		$27a^{6}b^{12}$	2	B2 (B1 for 2 of	3 parts in a product)
(c)		$7x^2y^2(2y^2+3x)$	2	factors outsid $7x(2xy^4 + 3x^4)$ the correct conside the br	rect factorisation with at least 2 de (eg 7x, x^2 , xy , etc) eg x^2y^2) eg $x^2y^2(14y^2 + 21x)$ or for ommon factor with just one mistake acket eg $7x^2y^2(2y+3x)$ which is squared on the y term
(d)	$y = mx + 4 \text{ where } m \neq 0 \text{ oe}$ (eg $y = 2x + 4$) or y = -2x + c or y + 2x = c oe or -2x + 4 or f(x) = -2x + 4 oe		2	М1	
	Correct answer scores full marks (unless from obvious incorrect working)	y = -2x + 4		A1 oe eg $y + 2x$	= 4
					Total 7 marks

Question	Working	Answer	Mark			Notes
8	$(54-24) \div 2 (=15)$ [may be marked on diagram]		5	M1		
	$"15"^2 - (24 \div 2)^2 (= 81)$			M1	ft the	eir "15" (if > 12)
	$[\text{height} =] \sqrt{"15"^2 - (24 \div 2)^2} (=9)$			M1	ft the	eir "15" (if > 12)
	(24×"9")÷2 oe			M1	figur	es must be from correct working
	<i>Correct answer scores full marks (unless from obvious incorrect working)</i>	108		A1	allow	v 107.9 – 108.1
	ALTERNATIVES BELOW					Total 5 marks
	$(54-24) \div 2 (=15)$ [may be marked on diagram]		5	M1		
	or $x = \cos^{-1}\left(\frac{"12"}{"15"}\right) (= 36.86)$			M1	ft their	• "15" (if > 12)
	or $y = \sin^{-1} \left(\frac{24 \div 2}{"15"} \right) (= 53.13)$ or $A = \cos^{-1} \left(\frac{15^2 + 15^2 - 24^2}{2 \times 15 \times 15} \right) (= 106.2)$					g Hero's formula S = 0.5×54 (= 27) and] 27 - 24) × (27 - "15") × (27 - "15")
	or $B = \cos^{-1}\left(\frac{15^2 + 24^2 - 15^2}{2 \times 15 \times 24}\right) (= 36.8)$					
	or "12"tan"36.86" (= 9) (allow 8.9 for these) "12" ÷ tan"53.13" (= 9) or "15" × sin "36.86" (= 9) or "15" × cos "53.13" (= 9)			M1	their "15"	M2 for $0.5 \times 24 \times "15" \times \sin"36.86"$ or $0.5 \times "15" \times "15" \times \sin(2 \times "53.13")$ or $0.5 \times "15" \times "15" \times \sin("106.2")$ or
	(24×"9")÷2 oe			M1	12)	$\sqrt{27"(27"-24)(27"-15")(27"-15")}$
	Correct answer scores full marks (unless from obvious incorrect working)	108		A1	allow	107.9 - 108.1
						Total 5 marks

Question	Working		Answer	Mark		Notes
9 (a)			43.5 - 44.5	1	B1	±0.5 small square
(b)	eg reading of 48 - 49			2	M1	For correct method to start the question eg a vertical line from 55 up to the line and a horizontal line from the correct point on the curve or a mark on the curve at the correct point and a mark on the vertical axis at the correct point or a correct reading of 48 to 49
	Correct answer scores f obvious incorrect worki		11 or 12		A1	Allow an answer of 11 or 12 (ie must be whole number)
(c)		ngj		2	B2	All values correctly filled in (NB: first 2 are already
	Time taken to shopin the market(m minutes)			D2	completed) (B1 for 3 or 4 correct values from 7, 10, 15, 15, 5)	
	$0 < m \leq 10$	3				
	$10 < m \le 20$	5				
	$20 < m \leq 30$	7				
	$30 < m \le 40$	10				
	$40 < m \le 50$	15				
	$50 < m \le 60$	15				
	$60 < m \le 70$	5				
			1		1	Total 5 marks

Qn	Working	Answer		Notes
10	$3x(2x-5) = 6x^2 - 15x$ or		3	M1 for multiplying $3x$ by $(2x - 5)$ with both terms correct or
	$(2x-5)^2 = 4x^2 - 10x - 10x + 250r$			for multiplying $(2x - 5)$ by $(2x - 5)$ with 3 out of 4 terms correct or
	$(2x-5)^2 = 4x^2 - 20x + 25$			for multiplying $(2x-5)$ by $(2x-5)$ and getting $4x^2 - 20x$ or $-20x + 25$ (not for
				$4x^2 + 25)$
	$(6x^2-15x)(2x-5)=12x^3-30x^2-30x^2+75x$ or or			M1ft (dep) for multiplying the product of $3x$ and $(2x-5)$ by $(2x-5)$ with 3 out of 4 terms correct or
	$(6x^2 - 15x)(2x - 5) = 12x^3 - 60x^2 + 75x$ oe or			for multiplying the product of $3x$ and $(2x-5)$ by $(2x-5)$ and getting $12x^3 - 60x^2 \dots$ or $\dots -60x^2 + 75x$
	$3x(4x^2 - 10x - 10x + 25) = 12x^3 - 30x^2 - 30x^2 + 75x \text{ oe or}$	** 		for multiplying the product of $(2x - 5)$ and $(2x - 5)$ by $3x$ with 3 out of 4 terms correct or
	$3x(4x^2 - 20x + 25) = 12x^3 - 60x^2 + 75x$			for multiplying the product of $(2x - 5)$ and $(2x - 5)$ by $3x$ with 2 out of 3 terms correct or Expansion in one stage will lead
				to $12x^3 - 30x^2 - 30x^2 + 75x$ without firstly expanding two factors – award M2 for 3 out of 4 terms correct
	Working required	$12x^3 - 60x^2 + 75x$		M1 for 2 out of 4 terms correct A1 dep on M1
				Total 3 marks

Question	Working	Answer	Mark	Notes
11	Two pairs of intersecting arcs with equal radii centre <i>A</i> and <i>B</i>		2	M1 for arcs that intersect within or on the guidelines or correct perpendicular bisector
				without arcs.
	Working required	Bisector with		A1 for a fully correct bisector with two
		construction arcs		intersecting arcs
				Total 2 marks

Question	Working	Answer	Mark	Notes
12		В	3	B1
		Α		B1
		F		B1
				Total 3 marks

	Working		Answer	Μ	[N	otes
13	$x^2 + (7 - 2x)^2 = 34$	$\left(\frac{7-y}{2}\right)^2 + y^2 = 34$		5	M1	substitution of linear equation into quadratic
	$5x^2 - 28x + 15[=0]$ oe	$5y^2 - 14y - 87[=0]$ oe			M1	dep on previous M1 for multiplying out and collecting terms, forming a three term quadratic in any form of $ax^2 + bx + c (= 0)$ where at least 2 coefficients (<i>a</i> or <i>b</i> or <i>c</i>) are correct and all are non-zero
	$\frac{(5x-3)(x-5) [= 0]}{\text{or}}$ $\frac{-(-28) \pm \sqrt{(-28)^2 - 4 \times 5 \times 15}}{2 \times 5}$	$\frac{(5y-29)(y+3) [= 0]}{\text{or}}$ $\frac{-(-14) \pm \sqrt{(-14)^2 - 4 \times 5 \times (-87)}}{2 \times 5}$			M1ft	quadratic equation using any correct method (if factorising, allow brackets which expanded give 2 out of 3 terms correct) (if using formula allow one sign error and some simplification – allow as
	or $5[(x-\frac{28}{10})^2 - \frac{784}{100}] + 15 = 0$ oe or x = 0.6 and $x = 5(allow incorrect labels for x/y)$	or $5[(y - \frac{14}{10})^2 - \frac{196}{100}] - 87 = 0$ oe or y = 5.8 and $y = -3(allow incorrect labels for x/y)$				far as $\frac{28 \pm \sqrt{784 - 300}}{10}$ or $\frac{14 \pm \sqrt{196 + 1740}}{10}$) (if completing the square allow as far as shown) or correct values for <i>x</i> or correct values for <i>y</i> dep on correct quadratic
	eg $y = 7 - 2 \times 5$ and $y = 7 - 2 \times 0.6$ (correct labels for x/y)	eg $5.8 = 7 - 2x$ and -3 = 7 - 2x (correct labels for x/y)			M1ft	
	Working must be shown		x = 0.6, y = 5.8 x = 5, y = -3		A1	dep on M1 and the correct quadratic (allow coordinates) must be paired correctly
						Total 5 marks

Question	Working	Answer	Mark	Notes
	eg $1000x = 438.38{10x} = 4.38{x}$ or $100x = 43.838{x} = 0.438{x}$ oe eg $1000x - 10x = 438.38{x} = 434$ and $\frac{434}{990} = \frac{217}{495}$ or eg $100x - x = 43.838 0.438 = 43.4$ and $\frac{43.4}{99} = \frac{217}{495}$ or eg $1000x - 10x = 38.38 0.3838 = 38$ and $0.4 + \frac{38}{990} = \frac{4 \times 99 + 38}{990} = \frac{434}{990} = \frac{217}{495}$ oe working required	Clearly shown	2	M1 For selecting 2 correct recurring decimals that when subtracted give a whole number or terminating decimal (43.4 or 434 etc) eg 1000x = 438.38 and 10x = 4.38 or 100x = 43.838 and x = 0.438 with intention to subtract. (if recurring dots not shown then showing at least one of the numbers to at least 5sf) or 0.4 + 0.038 and eg 1000x = 38.38 & 10x = 0.3838, with intention to subtract. A1 For completion to $\frac{217}{495}$ dep on M1 and use of some algebra
				Total 2 marks

Question	Working	Answer	Mark	Notes	
15	$y = \frac{k}{\sqrt{x}} \text{ or } ky = \frac{1}{\sqrt{x}} \text{ or } \sqrt{x} = \frac{k}{y} \text{ oe}$ $c^{4} = \frac{k}{\sqrt{c^{2}}} \text{ oe or } k = c^{4} \times \sqrt{c^{2}} \text{ oe}$		3	M1 (NB. Not for $y = \frac{1}{\sqrt{x}}$) Constant of proportionality must be a symbol such as k (Allow <i>c</i> for <i>k</i> for this mark only) M1 for substitution of <i>x</i> and <i>y</i> into a correct formula	M2 for $c^4 = \frac{k}{\sqrt{c^2}}$ oe
	Correct answer scores full marks (unless from obvious incorrect working)	$y = \frac{c^5}{\sqrt{x}}$		A1 oe e.g $y = c^5 \times \frac{1}{\sqrt{x}}$ Award 3 marks if answer is $y = \frac{k}{\sqrt{x}}$ on the answer line and $k =$ the body of working of the script	
					Total 3 marks

Question	Working	Answer	Mark	Notes
16	$(6x-5)(x+7)(=0) \text{ or}$ $\frac{-37 \pm \sqrt{37^2 - 4 \times 6 \times -35}}{2 \times 6}$ $6\left[\left(x + \frac{37}{12}\right)^2 - \left(\frac{37}{12}\right)^2\right] \dots \text{ oe}$		3	M1 A correct method to solve the quadratic equation $6x^2 + 37x - 35(=0)$ using any correct method (if factorising, allow brackets which expanded give 2 out of 3 terms correct) (if using formula allow one sign error in substitution and some simplification – allow as far as $\frac{-37 \pm \sqrt{1369 + 840}}{12}$) or completing the square as far as shown on left
	$\frac{5}{6}$ oe and -7			A1 dep on M1 correct critical values (allow 0.83)
	Working must be seen for both accuracy marks as asked for in question	$-7 \le x \le \frac{5}{6}$		A1 dep on M1 oe eg $-7 \le x \le 0.83$, $\begin{bmatrix} -7, \frac{5}{6} \end{bmatrix}$ Accept $x \le \frac{5}{6}, x \ge -7$
				Total 3 marks

Question	Working	Answer	Mark	Notes
17 (a)		12	1	B1
(b)	$\frac{1}{1-\sqrt{2}} \times \frac{1}{1+\sqrt{2}}$ or $\frac{1}{1-\sqrt{2}} \times \frac{1}{-1-\sqrt{2}}$ oe		3	M1 Multiplying numerator and denominator by $1+\sqrt{2}$
	$\frac{5 - \sqrt{36} + 5\sqrt{2} - \sqrt{18}}{1 + \sqrt{2} - \sqrt{2} - 2} \text{ or } \frac{5 - 6 - 3\sqrt{2} + 5\sqrt{2}}{-1} \text{ or } \frac{-5 + 6 + 3\sqrt{2} - 5\sqrt{2}}{1} \text{ oe } \frac{-5 + 6 + 3\sqrt{2} - 5\sqrt{2}}{1} \text{ oe } 1$ NB:allow $\sqrt{18}$ or $3\sqrt{2}$ $\sqrt{36}$ or 6 or $\sqrt{6}\sqrt{6}$			M1 Showing correct expansions (not necessarily as a fraction)
	working required	1−2√2		A1 dep on M2 (ie all stages of working must be shown convincingly) or for stating $a = 1$ and $b = -2$
				Total 4 marks

Question	Working	Answer	Mark	Notes
18 (a)		$\frac{k}{r}$	1	B1 allow kx^{-1}
(b)(i)		-46	1	B1 cao
(ii)	$\frac{3(2-3x^4)}{2-(2-3x^4)} \text{ or } \frac{6-9x^4}{2-2+3x^4} \text{ oe or } \frac{6-9x^4}{3x^4} \text{ oe}$		2	M1
	Correct answer scores full marks (unless from obvious incorrect working)	$\frac{2-3x^4}{x^4}$		A1 allow $\frac{2}{x^4} - 3$ oe
				Total 4 marks

Questi	ion	Working	Answer	Mark		Notes
19	(a)(i)		140	1	B1	
	(a)(ii)		opposite <u>angles</u> of a <u>cyclic quad</u> rilateral (add to 180°) oe	1	B1	dep on B1 in (a)(i) or seeing $180 - 40$ with no contradiction oe eg <u>angle</u> at <u>centre</u> is <u>double (2 ×)</u> angle at <u>circumference</u> oe AND <u>angles</u> around a <u>point</u> (or <u>point 360</u>)
	(b)	ADB = 66 or ABO = 90 - 66 (=24) or BAO = 90 - 66 (=24) or $ODB = \frac{180 - 80}{2} (=50) \text{ or}$ DOB reflex = 280		3	M1	Clearly labelled in working or shown on diagram
		For 2 of: ADB = 66 or ABO = 90 - 66 (=24) or BAO = 90 - 66 (=24) or $ODB = \frac{180 - 80}{2}$ (= 50) DOB reflex = 280			M1	(award M2 for 360-(280+40+24)oe
		Correct answer scores full marks (unless from obvious incorrect working)	16		A1	
		×				Total 5 marks

Question	Working	Answer	Mark	Notes
20		$2x + y \le 6$	3	B3 oe for all three correct
		$2y \leq 5x+1$		(B2 oe for any two correct)
		$3y+2x \ge 4$		(B1 oe for any one correct)
				$2x + y \le 6$ equivalent to $y \le -2x + 6$ oe $2y \le 5x + 1$ equivalent to $y \le 2.5x + 0.5$ oe
				$3y+2x \ge 4$ equivalent to $y \ge -\frac{2}{3}x+\frac{4}{3}$ oe
				Allow the following inequalities
				2x + y < 6 oe
				2y < 5x + 1 oe
				3y + 2x > 4 oe
				Total 3 marks

Question	Working	Answer	Mark	Notes
21	e.g.		5	M1
	$(\overrightarrow{AB} =) 2\mathbf{b} - 2\mathbf{a}$ oe or			
	$\left(\overrightarrow{BA}=\right)2\mathbf{a}-2\mathbf{b}$ oe or			
	$(\overrightarrow{BD} =)2(2\mathbf{b}-2\mathbf{a})(=4\mathbf{b}-4\mathbf{a})$ oe or			
	$(\overrightarrow{AD} =)3(2\mathbf{b}-2\mathbf{a})(=6\mathbf{b}-6\mathbf{a})$ oe			
	e.g.			M2 for 2 correct paths seen
	$\left(\overrightarrow{OE} = \right)2\mathbf{b} + 2\left(2\mathbf{b} - 2\mathbf{a}\right) + 7\mathbf{a} + 3\mathbf{b}\left(=3\mathbf{a} + 9\mathbf{b}\right)$ oe or			M1 for 1 correct path seen
	$(\overrightarrow{OC} =)2\mathbf{a} + \lambda(2\mathbf{b} - 2\mathbf{a}) = (2 - 2\lambda)\mathbf{a} + 2\lambda\mathbf{b}$ oe or $2\mathbf{b} + \lambda(2\mathbf{a} - 2\mathbf{b})$ or			Any correct path for OC passing
	$\left(\overrightarrow{CE}=\right)(2\mathbf{b}-2\mathbf{a})-\lambda(2\mathbf{b}-2\mathbf{a})+2(2\mathbf{b}-2\mathbf{a})+7\mathbf{a}+3\mathbf{b}=(1+2\lambda)\mathbf{a}+(9-2\lambda)\mathbf{b}$			through A or B involving a variable
	e.g.			M1 for comparing coefficients of a
	$\frac{2-2\lambda}{2\lambda} = \frac{1+2\lambda}{9-2\lambda} \text{ oe or } \frac{2-2\lambda}{2\lambda} = \frac{3}{9} \text{ oe or } \frac{(1+2\lambda)}{(9-2\lambda)} = \frac{1}{3} \text{ oe or } \lambda = \frac{3}{4}$			and b for
	$\frac{1}{2\lambda} = \frac{1}{9-2\lambda} \operatorname{de of} \frac{1}{2\lambda} = \frac{1}{9} \operatorname{de of} \frac{1}{(9-2\lambda)} - \frac{1}{3} \operatorname{de of} \lambda = \frac{1}{4}$			(OC and CE) or
	or			(OC and OE) or
	$(2-2\lambda)\mathbf{a}+2\lambda\mathbf{b}=\mu(3\mathbf{a}+9\mathbf{b}) \text{ or } \lambda=\frac{3}{4} \text{ or } \mu=\frac{1}{6}$			(CE and OE)
	or			OC is a multiple of OE
	$2\mathbf{b} + \lambda (2\mathbf{a} - 2\mathbf{b}) = \mu (3\mathbf{a} + 9\mathbf{b}) \text{ or } \lambda = \frac{1}{4} \text{ or } \mu = \frac{5}{6}$			Two different paths for OC
		1:5		A1 dep M2 oe e.g 2 : 10
	Working required			Total 5 marks

Question	Working	Answer	Mark	Notes
21	e.g.		5	M1
ALT	$(\overrightarrow{AB} =) 2\mathbf{b} - 2\mathbf{a}$ oe or			
	$\left(\overrightarrow{BA}=\right)2\mathbf{a}-2\mathbf{b}$ oe or			
	$(\overrightarrow{BD} =)2(2\mathbf{b}-2\mathbf{a})(=4\mathbf{b}-4\mathbf{a})$ oe or			
	$\left(\overrightarrow{AD}\right) = 3(2\mathbf{b} - 2\mathbf{a})(=6\mathbf{b} - 6\mathbf{a})$ oe			
	e.g.			M1
	$\left(\overrightarrow{OE}\right) 2\mathbf{b} + 2(2\mathbf{b} - 2\mathbf{a}) + 7\mathbf{a} + 3\mathbf{b} (= 3\mathbf{a} + 9\mathbf{b})$ oe			
	e.g.			M1
	$\left(\overrightarrow{AE}\right)$ 2 b -2 a +2(2 b -2 a)+7 a +3 b (= a +9 b)oe			
	$\left[\overrightarrow{AE} = \lambda \overrightarrow{AD} + \mu \overrightarrow{OE}\right]$			M1
	$\mathbf{a} + 9\mathbf{b} = \lambda (6\mathbf{b} - 6\mathbf{a}) + \mu (3\mathbf{a} + 9\mathbf{b})$ oe or			
	$\mathbf{a} + 9\mathbf{b} = \lambda (6\mathbf{b} - 6\mathbf{a}) + \mu (3\mathbf{a} + 9\mathbf{b}) \text{oe or}$ $1 = -6\lambda + 3\mu \text{ oe and } 9 = 6\lambda + 9\mu \text{ oe or or } \lambda = \frac{1}{4} \text{ or } \mu = \frac{5}{6}$			
		1:5		A1 dep on M2 oe e.g 2 : 10
	Working required			Total 5 marks

					Edexce	l average	es: score	s of can	didates v	vho achi	eved grad	de:	
Qn	Skill tested	Mean score	Max score	Mean %	ALL	9	8	7	6	5	4	3	U
1	Linear equations	2.52	3	84	2.52	2.96	2.92	2.86	2.76	2.45	2.01	1.38	0.57
2	Set language and notation	2.44	3	81	2.44	2.94	2.83	2.68	2.56	2.36	1.90	1.46	0.79
3	Simultaneous linear equations	2.17	3	72	2.17	2.95	2.83	2.68	2.32	1.80	1.30	0.49	0.07
4	Powers and roots	1.50	2	75	1.50	1.88	1.79	1.72	1.59	1.40	1.15	0.73	0.25
5	Probability	4.49	7	64	4.49	6.80	6.43	5.91	4.67	3.03	1.39	0.46	0.12
6	Fractions	2.18	3	73	2.18	2.76	2.68	2.52	2.28	1.91	1.47	1.14	0.61
7	Powers and roots	4.57	7	65	4.57	6.74	6.17	5.46	4.42	3.31	2.30	1.36	0.55
8	Mensuration of 2D shapes	3.05	5	61	3.05	4.84	4.5	4.02	2.98	1.64	0.87	0.37	0.18
9	Graphical representation of data	3.2	5	64	3.2	4.58	4.14	3.59	3.14	2.68	1.83	0.98	0.55
10	Algebraic manipulation	1.74	3	58	1.74	2.76	2.55	2.12	1.66	1.13	0.59	0.27	0.05
11	Construction	1.08	2	54	1.08	1.72	1.51	1.27	0.94	0.72	0.50	0.19	0.08
12	Calculus	1.58	3	53	1.58	2.72	2.11	1.68	1.17	0.86	0.71	0.64	0.43
13	Quadratic equations	2.35	5	47	2.35	4.71	3.87	2.65	1.51	0.72	0.28	0.07	0.01
14	Applying number	0.92	2	46	0.92	1.82	1.45	1.02	0.66	0.32	0.13	0.03	0.00
15	Proportion	1.19	3	40	1.19	2.54	1.85	1.29	0.69	0.35	0.13	0.05	0.01
16	Inequalities	1.10	3	37	1.10	2.40	1.77	1.11	0.61	0.26	0.12	0.03	0.00
17	Powers and roots	1.54	4	39	1.54	3.43	2.31	1.42	0.89	0.48	0.18	0.06	0.05
18	Function notation	1.43	4	36	1.43	3.00	2.06	1.39	0.97	0.56	0.22	0.14	0.07
19	Circle properties	1.8	5	36	1.8	3.9	2.68	1.72	1.05	0.62	0.23	0.05	0.03
20	Inequalities	1.00	3	33	1.00	2.45	1.54	0.77	0.44	0.19	0.04	0.04	0.00
21	Vectors	0.94	5	19	0.94	2.71	1.23	0.54	0.18	0.09	0.01	0.00	0.00
		42.79	80	53	42.79	70.61	59.22	48.42	37.49	26.88	17.36	9.94	4.42

Suggested grade boundaries

Grade	9	8	7	6	5	4	3
Mark	65	54	43	32	22	14	7