Q	Working	Answer	Mark	Notes
1	eg $6x + 10y = 6.2$ 6x + 3y = 3.75 7y = 2.45 eg $30x + 15y = 18.75$ 9x + 15y = 9.3 21x = 9.45 or eg $6\left(\frac{3.1-5y}{3}\right) + 3y = 3.75$		3	M1 for correct method to eliminate one variable – multiplying one or both equations so the coefficient of x or y is the same in both (condone one arithmetic error), with the intention to subtract all 3 terms to eliminate one variable (intention to subtract is clearly showing a minus sign or subtracting 2 or 3 out of 3 terms)
				and substituting into the other
	eg. $6 \times "0.45" + 3y = 3.75$ or $3 \times "0.45" + 5y = 3.1$ or $3x + 5 \times "0.35" = 3.1$ or $6x + 3 \times "0.35" = 3.75$			M1 dep. Substitute found value into one equation or correct method to eliminate second unknown.
		x = 0.45 oe y = 0.35 oe		A1 dep M1
				Total 3 marks

Practice Tests Set 19	– Paper 1H mark scheme	e, performance data and	l suggested gra	ade boundaries
-----------------------	------------------------	-------------------------	-----------------	----------------

Q	Working	Answer		Mark	Notes
		·			
2 (a)	$5x \le 2+7$ or $5x \le 9$ or $\frac{5x}{5} = \frac{7}{5} \le \frac{2}{5}$ oe			2	M1 allow any sign instead of \leq or for an answer of 1.8 oe or x and 1.8 oe with the incorrect sign
		<i>x</i> ≤ 1.8			A1 oe
(b)(i)	$(y \pm 7)(y \pm 5)$			2	M1 for $(y \pm 7)(y \pm 5)$ or $(y + a)(y + b)$ where $ab = -35$ or $a + b = -2$
		(y-7)(y+5)			A1 isw if student goes on to solve the equation in this part
(ii)		7, -5		1	B1ft answer must ft from their (y+a)(y+b) in (b)(i). Award B0for 7, -5 if no marks scored in (i)
					Total 5 marks
				ł	
3 (a)		a 1	1	B1	
(b)		w ¹²	1	B1	
(c)		$64x^{10}y^6$	2	B2	if not B2 then award B1 for 2 correctparts as part of a product eg $kx^{10}y^6$ where $k \neq 64$ or $64x^ky^6$ where $k \neq 10$ or $64x^{10}y^k$ where $k \neq 6$
(d)	$c + 8v = t^3$		2	M1	
		$t = \sqrt[3]{c + 8v}$		A1	oe SCB1 for an answer of $t = \frac{c+8v}{c+8v}$ oe
					3
					Total 6 marks

1.0

Practice Tests Set 19 – Paper 1H mark scheme, performance data and suggested grade boundaries

Q	Working	Answer	Ma	ırk	Notes
4 (a)	$2y - 4y + 8 - y^2$		2	M1	for 3 correct terms or
					for 4 correct terms ignoring signs or
					$2y-y^2$ or
					8 - 2y
		$8 - 2y - y^2$		A1	Any order but simplified.
					Total 2 marks
(b)		$5b^3c(3b^2-7c^8)$	2	B2	fully correct or B1 for a correct partial factorisation with at least two terms outside the bracket eg $5b^3(3b^2c-7c^9)$ or $5c (3b^5 - 7b^3c^8)$ etc or the fully correct factor outside the bracket with a two term expression in terms of <i>b</i> and <i>c</i> inside the bracket eg $5b^3c(15b^2 - c^8)$
					Total 2 marks

Q	Working	Answer	Mark	Notes
5	eg $\frac{27}{4}$ and $\frac{18}{5}$		3	M1 Both fractions expressed as improper fractions
	$\frac{4}{\frac{27}{4} \times \frac{7}{18}} = \frac{7}{18}$ or eg $\frac{189}{28} \div \frac{72}{28}$			M1 for both fractions expressed as equivalent fractions with denominators that are a common multiple of 4 and 7 (seeing this stage gains M2)
	eg $\frac{27}{4} \times \frac{7}{18} = \frac{189}{72} = \frac{21}{8} = 2\frac{5}{8}$ or $\frac{27}{4} \times \frac{7}{18} = \frac{189}{72} = 2\frac{45}{72} = 2\frac{5}{8}$ or $\frac{27'^3}{4} \times \frac{7}{18^2} = \frac{21}{8} = 2\frac{5}{8}$ or $\frac{189}{28} \div \frac{72}{28} = \frac{189}{72} = 2\frac{45}{72} = 2\frac{5}{8}$ oe if the student clearly shows $2\frac{5}{8} = \frac{21}{8}$ then they only need to complete the LHS to $\frac{21}{8}$ (often done in 1 st line of working)	shown		A1 dep M2 conclusion to $2\frac{5}{8}$ from correct working – either sight of the result of the multiplication e.g. $\frac{189}{72}$ must be seen then cancelled or correct cancelling prior to the multiplication with $\frac{21}{8}$ seen. NB entire solution using decimals scores no marks.
				Total 3 marks

Q Working Answer Mark Notes	Q	Working	Answer	Mark	Notes

6	$5x(x+2) = 5x^{2} + 10x$ or $(x+2)(3x-4) = 3x^{2} - 4x + 6x - 8(= 3x^{2} + 2x - 8)$ or $5x(3x-4) = 15x^{2} - 20x$		3	M1	for a correct intention to multiply all 3 factors by starting to multiply 2 factors only, allow one error
	eg [$(5x^2 + 10x)(3x - 4) =$] $15x^3 - 20x^2 + 30x^2 - 40x$ or [$5x(3x^2 + 2x - 8) =$] $15x^3 + 10x^2 - 40x$ or [$(x + 2)(15x^2 - 20x) =$] $15x^3 - 20x^2 + 30x^2 - 40x$			M1	(dep)ft for expanding by the third factor, allow one error (some may do the expansion in one stage and will get to $15x^3 - 20x^2 + 30x^2 - 40x$ without firstly expanding two factors, allow two errors)
		$15x^3 + 10x^2 - 40x$		A1	isw correct factorisation eg 5($3x^3 + 2x^2 - 8x$) do not isw incorrect factorisation eg 15 $x^3 + 10x^2 - 40x = 3x^3 + 2x^2 - 8x$
					Total 3 marks

				Total 3 marks
	· · · · · · · · · · · · · · · · · · ·			11, 12, 13 in the section $A' \cap B$
	7 8 14			if 4,6 in the section $A \cap B'$ and 9,
				SCB1 if no marks scored, award B1
			(B1	for 1 part correct)
	$\left \left(\begin{array}{c} 9 \\ \end{array} \right) \left(\begin{array}{c} 5 \\ \end{array} \right) \left(\begin{array}{c} 4 \\ \end{array} \right) \right $		(2-	
			(B2	for 2 or 3 parts correct)
	8	3	B3	all 4 parts of diagram correct
7		2	D2	-11 A method f 1' -1

Q	Working	Answer	Mark	Notes

8 (a)	700 ÷ 200 (= 3.5)		3	M1	or 3.5 shown on diagram – within bounds of overlay
				M1	for line drawn at correct angle ±2 within bounds of overlay
		C indicated in correct position		A1	for <i>C</i> drawn within bounds of overlay, inclusive of lines.
(b)		(1 :) 20 000	1	B1	
					Total 4 marks

9	(a)	eg $2y = -7x(+10)$		2	M1	for $2y = -7x(+10)$
						or an answer of $-3.5x$ oe or an answer of 3.5 oe
			-3.5		A1	oe
	(b)		(0, 5)	1	B1	cao
						Total 3 marks

10	5 5 7 8 10 12 13 14 16 21 23		3	M1	For ordering the numbers Allow one error or omission in the list.
	16 & 7 identified for LQ and UQ			M1	For identifying 16 and 7 – may also have identified the median (12)
		9		A1	
					Total 3 marks

Q	Working	Answer	Mark	Notes
---	---------	--------	------	-------

11 (a)	$12.6 \times 10^{(-24+145)}$ or 12.6×10^{121} or 1.26×10^{n}		2	M1
		1.26×10^{122}		A1 allow 1.3×10^{122}
(b)	216 or 2.16 or 10^{120} or 10^{122} or $6^3 \times 10^{40 \times 3}$		3	M1 or for digits 216
	216×10^{120} oe or or 2.16×10^{n} where $n \neq 122$			M1
		2.16×10 ¹²²		A1
				Total 5 marks

12	$\left(\frac{2w^2}{y^5}\right)^{-3} \text{ or } \left(\frac{y^{20}}{16w^8}\right)^{\frac{3}{4}} \text{ or } \left(\frac{4096w^{24}}{y^{60}}\right)^{-\frac{1}{4}}$		3	M1	for one of fourth rooting or reciprocating or cubing
	$\left(\frac{8w^{6}}{y^{15}}\right)^{-1} \text{ or } \frac{2^{-3}w^{-6}}{y^{-15}} \text{ or } \frac{\frac{1}{8}w^{-6}}{y^{-15}} \text{ or } \left(\frac{y^{5}}{2w^{2}}\right)^{3} \text{ or } \left(\frac{y^{60}}{4096w^{24}}\right)^{\frac{1}{4}}$ $\text{ or } \frac{0.125y^{15}}{w^{6}} \text{ or } \frac{0.125w^{-6}}{y^{-15}} \text{ or } \frac{0.125}{y^{-15}w^{6}} \text{ oe }$			M1	for two of fourth rooting or reciprocating or cubing
		$\frac{y^{15}}{8w^6}$		A1	allow $\frac{y^{15}}{8w^6}$ or $\frac{y^{15}w^{-6}}{8}$ or $0.125y^{15}w^{-6}$ or $\frac{1}{8}y^{15}w^{-6}$ or $\frac{w^{-6}}{8y^{-15}}$ or $\frac{1}{8y^{-15}w^6}$
					Total 3 marks

Q	Working	Answer	Mark	Notes
---	---------	--------	------	-------

13 (a)	17.75	1	B1	0e
(b)	18.25	1	B1	• oe 18.249 (allow 18.249)
				SC B1 for 17.5 in (a) and 18.5 (or 18.49)in (b)
				Total 2 marks

14 (i)	(-4, 7)	1	B1
(ii)	(5, 10)	1	B1
			Total 2 marks

15	$x \ge -1$	1	B1	oe condone > in place of \geq
	$y \ge x$	1	B1	oe condone > in place of \geq
	$x+2y \le 8$	1	B1	oe condone < in place of \leq
			SCB1	if all inequalities reversed
				Total 3 marks

Q	Wor	king	Answer	Mar	k Notes
16	$3x^2 + (2x-3)^2 - x(2x-3) = 5$	$3\left(\frac{y+3}{2}\right)^2 + y^2 - y\left(\frac{y-3}{2}\right)^2$	$\left(\frac{+3}{2}\right) = 5$	5 M1	Correct substitution of x for y (or y for x)
	$5x^2 - 9x + 4(=0)$ oe or $5x^2 - 9x = -4$	$5y^2 + 12y + 7(=0)$ oe or $5y^2 + 12y = -7$		M1	for a correct equation in the form $ax^2 + bx + c (= 0)$ oe or $ax^2 + bx = -c$
	$(5x-4)(x-1)(=0) \text{ or} (x=) \frac{9 \sqrt[4]{(-9)^2 - 4 \times 5 \times 4}}{2 \times 5} \text{ or} 5 \left[x - \left(\frac{9}{10}\right)^2 - \left(\frac{9}{10}\right)^2 \right] + 4 \left(=0\right) $ [leading to x values of 0.8 and 1]	$(5y+7)(y+1)(=0) \text{ or}$ $(y=)\frac{{}^{-12\pm}\sqrt{12^2-4\times5\times7}}{2\times5}$ or $5\left[\left(y+\frac{6}{5}\right)^2 - \left(\frac{6}{5}\right)^2\right] + 7(y+1)(y+1)(y+1)(y+1)(y+1)(y+1)(y+1)(y+1)$	(=0)	M1ft	dep on M1 for solving their quadratic equation using any correct method - if factorising, allow brackets which expanded give 2 out of 3 terms correct (if using formula or completing the square allow one sign error and some simplification – allow as far as $\frac{9\pm\sqrt{81-80}}{10}$ oe or $\frac{-12\pm\sqrt{144-140}}{10}$ oe or $5\left(x-\frac{9}{10}\right)^2 - \frac{1}{20}$ oe or $5\left(y+\frac{6}{5}\right)^2 - \frac{1}{5}$
	$(y =) 2 \times "0.8" - 3$ and $2 \times "1" - 3$	$(x=)\frac{"-1.4"+3}{2}$ and $\frac{"-1"+3}{2}$		M1	dep on previous M1
			x = 0.8 & y = -1.4 / x = 1 &	Al	oe, for both solutions dep on M2
			y = -1		Total 5 marks
					i otar 5 marks

(Q	Working		Answer		Mark	Notes
17	$\frac{360}{10}(=$	36) ext angle		4	M1	method (angles	to find interior or exterior angle. may be seen on diagram)
	or (10-	$\frac{(-2)\times180}{10}(=144)$					
	$x = "144$ $x = \frac{"540}{r}$	4" - 90 (= 54) or $\frac{0"-3 \times "144"}{2} (= 54)_{\text{or}}$ -"36"(= 54)			M1	method intended eg use o use of e 90° use	to find x (must show it is 1 to be x) of int angle -90° xt angle $+x =$ of pentagon
	54 on the	e diagram is insufficient – must see working				All figu working	res in " " must come from correct
	BAD = 0	$CDA = GDE = DGF = \frac{360 - 2 \times "144"}{2} (= 36)$			M1	A correct within the or 36° show	et method to find an angle of 36° he shape (not exterior angle) wn in correct place in diagram
	There ar Please cl	e other correct methods. heck for correct working.	x = 54 $y = 54$		A1	dep on l correct working	M3 to find each of x and y and the value of 54 for both from correct
							Total 4 marks
ALT	ADG =	'144'' − 2 × ''36'' (= 72)			M1		
	JA is par	rallel to GD			M1		
	DGA = I	DAG (y) [isosceles triangle]			M1		
	x = DGA	1 = y	shown		A1		
	There ar Please cl	e other correct methods. heck for correct working.					Total 4 marks

Q	Working	Answer	Mark	Notes
18	$\sqrt{12}$ $\sqrt{3}-2$		3	M1 rationalise denominator – award for
	$eg \frac{1}{\sqrt{3}+2} \times \frac{1}{\sqrt{3}-2}$			seeing multiplication by $\frac{\sqrt{3}-2}{\sqrt{3}-2}$
				or $\frac{-\sqrt{3}+2}{-\sqrt{3}+2}$
	eg $\frac{(\sqrt{36} - 2\sqrt{12})}{3-4}$ or $\frac{(6-2\sqrt{12})}{-1}$ or $-6+2\sqrt{12}$			M1 dep M1 correctly simplifying numerator and denominator.
	or $\frac{6-4\sqrt{3}}{-1}$ or $= 6+4\sqrt{3}$			(denominator could be $3 - 4$ or -1)
		$-6 \pm \sqrt{48}$		A1 dep M2 must be in correct form
				(including $\sqrt{48}$)
				allow $a = -6$ and $b = 48$
				Total 3 marks

Practice Tests Set 19 – Paper 1H mark scheme, performance data and suggested grade boundaries

19	(a)		-0.2 and 2.2	2	B2	Both correct to 1 decimal place
						(B1 for (-0.2, 0), (2.2, 0) or a single correct value to 1 decimal place or both values within -0.2 to -0.23 and 2.2 to 2.23)
	(b)	(y =) -2x + 1 oe seen		3	M1	Written – could be label on graph
		y = -2x + 1 drawn			M1	dep on previous M1 for drawing y = -2x + 1 passing through (-1, 3) and (2, -3) (allow 1 square tolerance)
			–0.6 and 1.6		A1	dep on M2 for both answers to 1 decimal place
						Total 5 marks

Q	Working	Answer	Mark	Notes

20 (a)	$7-3(x^2-4x)$		3	M1	or for one of <i>a</i> , <i>b</i> or <i>c</i> correct	
	$7-3[(x-2)^2-4]$			M1	or for two of <i>a</i> , <i>b</i> or <i>c</i> correct	
		$19 - 3(x - 2)^2$		A1		
(1.)		(2, 10)	1	D1	6 41 - in annual in a	
(6)		(2, 19)		ВІ	it their expression	
						Total 4 marks

Q working Answer Mark Notes	Q	Working	Answer	Mark	Notes
-----------------------------	---	---------	--------	------	-------

		1	-		
21	eg $(2n + 1)^2 + (2n - 1)^2$ or $(2n + 1)^2 + (2n + 3)^2$ oe		3	M1	for setting up a correct algebraic expression (any letter can be used) must have intention to add (may
					come after expanding)
	Eg $4n^2 + 4n + 1 + 4n^2 - 4n + 1$ or $8n^2 + 2$ or $4n^2 + 4n + 1 + 4n^2 + 12n + 9$ or $8n^2 + 16n + 10$ oe			M1	correct expansion of brackets and correct signs or a correct result.
	eg $8 \times n^2 \pm 2$ $\frac{8n^2 \pm 16n \pm 10}{8} = n^2 \pm 2n \pm \frac{10}{8}$ which shows a remainder of 2 or $10 - 8 = 2$ or $\frac{8n^2 \pm 16n \pm 10}{8} = n^2 \pm 2n \pm 1$ remainder 2 oe $\frac{8n^2 \pm 16n \pm 10}{8} = n^2 \pm 2n \pm 1 \pm \frac{2}{8}$ oe $8(n^2 \pm 2n \pm 1) \pm 2$ oe	shown clearly		A1	conclusion dep on M2 for eg $8n^2+ 2$ and a suitable conclusion (may be shown as a calculation/in numbers). The conclusion must be an intention to show that the result is a multiple of 8 and there is 2 remaining.
					Total 3 marks
I				1	

Q Working Answer Mark Notes

22	eg $\overrightarrow{ON} = 8\mathbf{a} + \frac{1}{2}(6\mathbf{b} - 8\mathbf{a})(= 3\mathbf{b} + 4\mathbf{a})$ or $\overrightarrow{ON} = 6\mathbf{b} + \frac{1}{2}(-6\mathbf{b} + 8\mathbf{a})(= 3\mathbf{b} + 4\mathbf{a})$ or $\overrightarrow{NO} = \frac{1}{2}(8\mathbf{a} - 6\mathbf{b}) - 8\mathbf{a}(= -4\mathbf{a} - 3\mathbf{b})$ or $\overrightarrow{NO} = -6\mathbf{b} + \frac{1}{2}(6\mathbf{b} - 8\mathbf{a})(= -3\mathbf{b} - 4\mathbf{a})$ or $\overrightarrow{AM} = -8\mathbf{a} + \frac{1}{3}(6\mathbf{b})(= 2\mathbf{b} - 8\mathbf{a})$ or $\overrightarrow{AM} = -8\mathbf{a} + 6\mathbf{b} - \frac{2}{3}(6\mathbf{b})(= 2\mathbf{b} - 8\mathbf{a})$ or $\overrightarrow{MA} = 8\mathbf{a} - \frac{1}{3}(6\mathbf{b})(= 8\mathbf{a} - 2\mathbf{b})$ or $\overrightarrow{MA} = \frac{2}{3}(6\mathbf{b}) + 8\mathbf{a} - 6\mathbf{b}(= 8\mathbf{a} - 2\mathbf{b})$		5	M1	a correct expression for \overrightarrow{ON} or \overrightarrow{NO} or \overrightarrow{AM} or \overrightarrow{MA}
	$\overrightarrow{OP} = \mu (3\mathbf{b} + 4\mathbf{a}) \text{ and one of}$ eg $\overrightarrow{OP} = 8\mathbf{a} + x(2\mathbf{b} - 8\mathbf{a})(=(8-8x)\mathbf{a} + 2x\mathbf{b}) \text{ or}$ $\overrightarrow{OP} = 2\mathbf{b} + y(8\mathbf{a} - 2\mathbf{b})(=(2-2y)\mathbf{b} + 8y\mathbf{a})$			M2	oe (M1 for one correct expression for \overrightarrow{OP}) (where μ , x, y are scalars)
	eg $\frac{4}{3} = \frac{8y}{2-2y}$ or $\frac{4}{3} = \frac{8-8x}{2x}$ oe or $3\mu = 2x$ and $4\mu = 8-8x$ or $3\mu = 2-2y$ and $4\mu = 8y$. 3		M1	A correct expression to find the position of P along \overrightarrow{ON} or two correct simultaneous equations coming from the expressions for \overrightarrow{OP} dep on M3, oe eg 2a+1.5b
		$2\mathbf{a} + \frac{3}{2}\mathbf{b}$			Total 5 marks

Q Working	Answer	Mark	Notes
-----------	--------	------	-------

				Edexcel	averages:	scores of	candidates	s who ach	ieved grad	e:		
	Mean	Max	Mean									
Qn	score	score	%	ALL	9	8	7	6	5	4	3	U
1	2.37	3	79	2.37	2.96	2.91	2.81	2.57	1.97	1.32	0.42	0.04
2	3.85	5	77	3.85	4.95	4.76	4.52	3.95	3.15	2.03	1.02	0.00
3	4.81	6	80	4.81	5.85	5.66	5.39	4.84	4.12	3.22	2.15	0.00
4	3.04	4	76	3.04	3.85	3.67	3.42	3.10	2.52	1.91	1.01	0.00
5	2.25	3	75	2.25	2.84	2.67	2.48	2.20	1.85	1.53	0.86	0.35
6	2.02	3	67	2.02	2.83	2.69	2.46	2.10	1.29	0.64	0.25	0.13
7	2.16	3	72	2.16	2.84	2.71	2.42	2.04	1.66	1.14	0.96	0.55
8	2.21	4	55	2.21	3.38	2.70	2.46	2.05	1.39	0.91	0.46	0.00
9	1.52	3	51	1.52	2.81	2.41	1.73	0.92	0.35	0.12	0.07	0.00
10	1.55	3	52	1.55	2.56	1.95	1.66	1.41	0.81	0.45	0.26	0.04
11a	0.99	2	50	0.99	1.63	1.25	1.04	0.84	0.57	0.35	0.13	0.09
11b	1.63	3	54	1.63	2.73	2.22	1.72	1.41	0.77	0.39	0.24	0.09
12	1.53	3	51	1.53	2.59	1.95	1.62	1.18	0.87	0.61	0.17	0.04
13	0.91	2	46	0.91	1.42	1.13	0.92	0.83	0.62	0.31	0.14	0.00
14	0.87	2	44	0.87	1.83	1.42	0.80	0.36	0.17	0.04	0.04	0.00
15	1.24	3	41	1.24	2.63	1.89	1.15	0.56	0.25	0.08	0.03	0.02
16	2.14	5	43	2.14	4.54	3.40	1.85	0.92	0.43	0.20	0.07	0.00
17	1.19	4	30	1.19	2.56	1.64	1.07	0.57	0.32	0.11	0.04	0.04
18	0.95	3	32	0.95	2.09	1.38	0.74	0.44	0.21	0.09	0.03	0.00
19	1.00	5	20	1.00	2.06	1.30	0.94	0.59	0.28	0.14	0.03	0.00
20	0.84	3	28	0.84	2.38	1.08	0.41	0.09	0.01	0.00	0.00	0.00
21	0.74	3	25	0.74	2.00	0.97	0.38	0.15	0.02	0.01	0.00	0.00
22	0.77	5	15	0.77	2.30	0.79	0.30	0.16	0.01	0.00	0.00	0.00
	40.58	80	41	40.58	65.63	52.55	42.29	33.28	23.64	15.60	8.38	1.39

Practice Tests Set 19 – Paper 1H mark scheme, performance data and suggested grade boundaries

Q	Working	Answer	Mark	Notes

Suggested grade boundaries

Grade	9	8	7	6	5	4	3
Mark	59	47	38	28	20	12	7