Q	Working	Answer	Mark	Notes

1	$0.0027 = \frac{5.4}{(V)}$ oe		5	M1 for correctly using density = $\frac{\text{mass}}{\text{volume}}$
	$(V =) \frac{5.4}{0.0027} (= 2000)$			M1 for correctly rearranging for V
	$p \neq 10^2 \neq h = 20000$			M1ft their 2000 for $p \neq 10^2 \neq h =$ their V
	$(h =)\frac{2000}{p \neq 10^2}$ or $(= 6.3661)$			M1ft their 2000 dep on previous M1 for correctly rearranging for h
	Correct answer scores full marks (unless from obvious incorrect working)	6.4		A1 awrt 6.4
				Total 5 marks

2	$12 \times 2.45 (= 29.4)$ or $21 \div 12 (= 1.75)$		3	M1
	$\frac{'29.4'-21}{21} \times 100 \text{ or } $ $\frac{2.45-'1.75'}{'1.75'} \times 100 \text{ oe } \text{ or } $ $(\frac{'29.4'-21}{12}) \div '1.75' \times 100 \text{ oe } \text{ or } $ $(\frac{2.45}{'1.75'} \times 100) - 100 \text{ oe } $			M1 or an answer of 140(%)
	Correct answer scores full marks (unless from obvious incorrect working)	40		A1
				Total 3 marks

Q working Answer Mark Notes	Q	Working	Answer	Mark	Notes
-----------------------------	---	---------	--------	------	-------

3	4.5		Δ	M1 finding 4 5% or	M2 for
0	$\frac{4.5}{100} \times 25\ 000\ (=1125)$ or		т	104 5% of 25 000	1045^3 05000(20
	100			$(allow for 2 \times 0.045 \times$	$1.045^{\circ} \times 25000(=28)$
				$(allow 101.3 \times 0.043 \times 0.043)$	529.(15313))
	104.5 $\times 25000(-26125)$			25 000 oe)	
	$\frac{100}{100} \times 25000(=20125)$ or			or	
				the total interest for T	
	$1150 \times 2 (-2450)$ or			bank	
	$1130 \times 3(-3430)$ 0			or	
				the total amount gained	
	$25\ 000 + 1150 \times 3\ (= 28\ 450)$			for T bank	
	$(allow \frac{3 \times 4.5}{25000} \times 25000(-3375))$ for this mark)				
	$(anow - \frac{100}{100} \times 25000(-5575))$ for this mark)				
	4.5			M1 completing the	
	$\frac{100}{100}$ × (25 000 + '1125') (= 1175.625 or 1175 or 1176) and			interest for C bank	
	100				
	$\frac{4.5}{2}$ × (25 000 + '1125' + '1175.625') (= 1228.529)			or	
	100				
	or			completing the total	
	104.5			completing the total	
	$\frac{100}{100}$ × 26125 (= 2/300.625) and $\frac{100}{100}$ × 2/300.625 (= 28529.15)			amount for C bank	
	(1125' + (1176' + (1229') = 3530)) or			M1 for total interest for C	hank and total
	$(28520)^{\circ}$ 25 000 (=3520)			interest for T bank	
	and $2 \times 1150 (-3450)$			ar	
	anu 5 ^ 1150 (= 5450)			$\frac{\mathbf{V}}{\mathbf{V}}$	u d tatal and and from
				$\begin{bmatrix} 101a1 \\ 1 \end{bmatrix}$	nd total amount for
	or			I bank	
	^(28 529) and 25 000 + ⁽³⁴⁵⁰⁾ (= 28 450)				
	Working required	79 or		A1 dep on M2	
		80		Allow 79 - 80	
					Total 4 marks

O Working Answer Mark Notes					
Q working Answer Mark Notes	Q	Working	Answer	Mark	Notes

				1	
4	(a)		31	1	B1 31/70
			70		Accept 0.44(28571) or
			/0		44.(2)%
	(b)	$4 \times 6 + 12 \times 14 + 20 \times 19 + 28 \times 25 + 36 \times 6$ (= 1488)		4	M2 for at least 4 correct products added
	(0)				(need not be evaluated)
		A M			(need not be evaluated)
		Of			
					If not M2 then award:
		24 + 168 + 380 + 700 + 216 (= 1488)			
					(M1 for consistent use of value within
					interval (including end points) for at least
					4 products which must be added
					-
					or
					correct midpoints used for at least 4
					num durate and not added)
					products and not added)
		$4 \times 6 + 12 \times 14 + 20 \times 19 + 28 \times 25 + 36 \times 6$			M1 dep on at least M1
		70			
		$e\sigma$ '1488' \div 70			Allow division by their Σf provided
					addition or total under column seen
		Correct answer scores full marks (unless from obvious	21.26		A1 awrt 21.26
		incorrect working)			accept 21.3
					Total 5 marks
					i utal 5 mai Ks

Q	Working	Answer	Mark	Notes
5	E.g. $2 \times 2 \times 900 \text{ or } 2^2 \times 900 \text{ or } 2 \times 3 \times 600 \text{ or}$ $2 \times 5 \times 360 \text{ or } 3 \times 3 \times 400 \text{ or } 3^2 \times 400 \text{ or}$ $3 \times 5 \times 240 \text{ or } 5 \times 5 \times 144 \text{ or } 5^2 \times 144$ E.g. E.g. E.g. 2 3600 2 1800 2 900		3	M1 for at least 2 correct stages in prime factorisation which give 2 prime factors – may be in a factor tree or a table or listed eg 2, 2, 900 (see LHS for examples of the amount of work needed for the award of this mark, allow no more than one mistake ft in factor tree or table (eg one mistake with 2 prime factors ft: $3600 = 1800 \times 20 = 2 \times 900 \times 4 \times 5$ or $360 = 2 \times 2 \times 90$)
	E.g. $2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 5 \times 5$ E.g. E.g. E.g. E.g. $2 - 3600$ 2 - 1800 2 - 900 2 - 450 3 - 225 3 - 75 5 - 5 5 - 5 5 - 5 3 - 75 5 - 5 5 - 5 3 - 75 5 - 5 5 - 5 3 - 75 5 - 5 3 - 75 5 - 5 3 - 75 5 - 5 5 - 5 3 - 75 5 - 5 3 - 75 5 - 5 5 - 5 3 - 75 5 - 5 5 - 5 3 - 75 5 - 5 5 - 5 3 - 75 5 - 5 3 - 75 3 - 25 5 - 5 5 -			M1 for 2, 2, 2, 2, 3, 3, 5, 5 or 2^4 , 3^2 , 5^2 or 2^4 + 3^2 + 5^2 (ignore 1s) (may be a fully correct factor tree or ladder)
	Working required	$2^4 \times 3^2 \times 5^2$		A1 dep on M2 can be any order (allow $2^4 \cdot 3^2 \cdot 5^2$) (SCB1 for $3.6 \times 2^3 \times 5^3$)
				Total 3 marks

Q	Working	Answer	Mark	Notes
6	$(5-2) \times 180 - 112 - 102 - 96 (= 230)$ oe eg		5	M1
	540 - 112 - 102 - 96 (= 230)			
	or			
	360 - (180 - 112) - (180 - 102) - (180 - 96)			
	(= 360 - 68 - 78 - 104 = 360 - 230 = 130) oe			
	'540'-112-102-96			M1 dep on previous mark
	$\frac{1}{2} (= 115) \text{ or } (130^{\circ} \div 2) (= 65)$			
	$180 \times (8-2)$ (125)			M1 indep
	or			
	$180 - (360 \div 8) (= 135)$			• < 0
	or			Withhold the mark for $\frac{360}{60}$ (= 45) if
	$\frac{360}{(-45)}$ as exterior angle of octagon			8
	8			shown as an interior angle
	360 - '115' - '135'			M1
	or			
	·65 [·] + ·45 [·]			
	Working required	110		A1 dep on M1
				Total 5 marks

Q	Workin	g	Answer	Mark		Notes
7	$4 \times (5 - x)$ or $5 \times (2x - 1)$ o 20 - 4x or $10x - 5$ oe	r		4	M1	for setting up a correct algebraic expression for area A or area B (could be seen as part of an equation) (condone lack of brackets for multiplying if meaning is clear for this mark only)
	one from: 4(5-x) = 20 - 4x or $2 \times 4(5-x) = 40 - 8x$ or $0.5 \times 4(5-x) = 10 - 2x$ oe	and one from: 5(2x-1) = 10x - 5 or $2 \times 5(2x-1) = 20x - 5$ or $0.5 \times 5(2x-1) = 5x - 5$ oe	10 2.5		M1	for expanding 2 sets of brackets correctly (one for each shape) [allow ×2 or ÷2 for the wrong shape for this mark] Need not be in an equation at this stage.
	eg 10x + 8x = 40 + 5 or -5 - 40 = -10x - 8x or 18x = 45 or -45 = -18x or 4x + 5x = 20 + 2.5 oe Working required		2.5		M1	for a <u>correct</u> equation with terms in <i>x</i> on one side and number terms the other side
						1
						Total 4 marks

Q	Working	Answer	Mark	Notes
8	0.22x = 5.48 oe or			M1
	$(1\% =) 5.48 \div 22 (= 0.24909)$ or			
	$100 \div 22 (= 4.54)$			
	$(x =) 5.48 \div 0.22$ oe or			M1
	$(100\% =) 5.48 \div 22 \times 100 \text{ or}$			
	"0.24909…" × 100 or			
	5.48 × "4.54…"			
	Correct answer scores full marks (unless from	24.9		A1 awrt 24.9
	obvious incorrect working)			
				Total 3 marks

8	$0.22x = 5\ 480\ 000$ oe or		M1
ALT	$(1\% =) 5 480 000 \div 22 (= 249 090.9091)$ or		
1	$100 \div 22 (= 4.54)$		
	5 480 000 ÷ "0.22" oe or		M1
	$(100\% =) 5\ 480\ 000 \div 22 \times 100\ or$		
	"249 090.9091…"× 100 or		
	5 480 000 × "4.54…"		
	Correct answer scores full marks (unless from obvious incorrect working)	24 900 000	A1 awrt 24 900 000
			Total 3 marks

Q	Working	Answer	Mark	Notes
9 (a)		$\frac{3}{2}$	2	B1 for lower 1 st game branch probability
		$\frac{2}{9}, \frac{4}{9}, \frac{3}{9}$		B1ft for all values correct on 2 nd game branches
(b)	$\frac{2}{9} \times \frac{3}{9} \text{ or } \frac{4}{9} \times \frac{4}{9} \text{ or } \frac{3}{9} \times \frac{2}{9}$		3	M1 ft from their tree diagram for one correct product from <i>WL</i> or <i>L W</i> or <i>DD</i> (allow probabilities to 2 dp truncated or rounded)
	$\frac{2}{9} \times \frac{3}{9} + \frac{4}{9} \times \frac{4}{9} + \frac{3}{9} \times \frac{2}{9}$			M1 ft for a fully correct method
	Correct answer scores full marks (unless from obvious incorrect working)	$\frac{28}{81}$		A1 Allow 0.345 (2 dp truncated or rounded) or 34.5% (2 sf truncated or rounded)
				Total 5 marks

Q	Working	Answer	Mark	Notes
10	$\frac{4}{15} \times \frac{4}{15} \text{ or } \frac{5}{15} \times \frac{5}{15} \text{ or } \frac{6}{15} \times \frac{6}{15} \text{ oe}$ (where $6 = 15 - 4 - 5$)	3	$\begin{array}{ c c c c c } M1 & \text{of} \\ for & \text{on} \\ round \\ (\frac{4}{15})^2 \\ (\frac{5}{15})^2 \\ (\frac{6}{15})^2 \end{array}$	e he correct product (allow decimals to 2 dp led or truncated) = $(0.26(6))^2 = 0.07(11)$ = $(0.33(3))^2 = 0.11(1)$ = $(0.4)^2 = 0.16$
	$\frac{4}{15} \times \frac{4}{15} + \frac{5}{15} \times \frac{5}{15} + \frac{6}{15} \times \frac{6}{15}$ oe eg $\frac{16}{225} + \frac{1}{9} + \frac{4}{25}$ (where $6 = 15 - 4 - 5$)		M1 of for the	e e sum of all three correct products
	Correct answer scores full marks (unless from obvious incorrect working)	77 225	A1 oe (if no non-re SCB1 replac	e 0.34(222) or 34.(222)% marks awarded, SCB2 for $\frac{31}{105}$ oe from eplacement, for a fully correct method for non- cement)
				Total 3 marks

Q		Working	Answe	r	Mark	Notes
11	$(AC^2 =)$ $(AC^2 =)$	$9^2 + 12^2 - 2 \times 9 \times 12 \times \cos 60 \ (= 117) $ or $81 + 144 - 108 \ (= 117) $ oe		5	M1 oe eg $BM = 9\cos^{-1}$ $AC^2 = \frac{9\sqrt{2}}{2}$ (where AM	$(560 (= 4.5) \text{ and } AM = 9 \sin 60 (= \frac{9\sqrt{3}}{2}) \text{ and}$ $(\frac{\sqrt{3}}{2})^{12} + (12 - 4.5)^2$
	(AC =)	$\sqrt{117}$ or $3\sqrt{13}$ or $10.8(16653)$			Al oe	
	(area <i>AB</i> 46.7(653	$C = (0.5 \times 9 \times 12 \times \sin 60) = (27\sqrt{3} \text{ or})$			M1 indep o	or $\frac{1}{2} \times (\frac{9\sqrt{3}}{2}) \times 12 \ (= 27\sqrt{3}) \ \text{oe}$
	(area AC	$D = 0.5 \times 7 \times \sqrt{117} \times \sin 84 (=37.6(50896))$			M1 dep on	1st M1
	Working	required	84.4		A1 dep on 1	M3 awrt 84.4
		-				Total 5 marks

12	(a)	$54 \div 9 \times 4 \text{ oe or } \frac{4}{9} \pm 54 \text{ oe}$		2	M1 Allow 0.44(44) × 54 or $\frac{24}{54}$
		Correct answer scores full marks (unless from obvious incorrect working	24		A1
	(b)	$\frac{"24"+n}{54+n} = \frac{1}{2} \text{ or } \frac{30}{60} \text{ or}$ 54 - "24" (= 30) and "30" - "24" or 2 × "30" - 54		2	M1 ft if "24" < 27 or $\frac{6}{60}$
		Correct answer scores full marks (unless from obvious incorrect working)	6		A1
					Total 4 marks

Q	Working	Answer	Mark	Notes

13	$2 \times 0.75 (= 1.5)$ oe or $2 \times 0.75 \times 2 (= 3)$ oe		5	M1 for area of rectangle
	$\pi \times (0.5 \div 2)^2 (= 0.1963)$ or			M1 for area of circle
	$\frac{1}{2} \times \pi \times (0.5 \div 2)^2 (= 0.09817)$			or
	2			area of semicircle
	"1.5" – "0.09817" (= 1.4018) or			M1
	"3" – "0.1963" (= 2.8036)			
	"1.4018" $\times 2 \times 250 \div 4 \ (= 175.228)$ or			M1or for 87 – 88
	" 2.8036 " × $250 \div 4$ (= 175.228) or			
	" 1.4018 " × 250 ÷ 4 (= 87.6)			
	Correct answer scores full marks (unless from	175		A1 Allow 175 – 176
	obvious incorrect working)			
				Total 5 marks

	Q		Working		Answer	Mark		Notes
14	5a + 3p = 1.9 or 5a + 3p = 19	$_{6}^{6}$ and $_{3a+2}^{3a+2}$	2p = 1.220e 2p = 1220e	M2 fo metho calcul 0.26 c E.g.	or an arithmetical od (must see the ation to find 0.22 or or 0.74 and 0.48 oe)		5	M1 for setting up both equations oe Allow the use of apples and pears oe throughout, e.g. 5 apples + 3 pears = 1.96 and 3 apples + 2 pears = 1.22
	E.g. 15a + 9p = 5 15a + 10p = 6 Subtracting (- $p = -0.22$) E.g. $5a + 3p$ Subtracting	6.1(0) = 1.96 and 6	E.g. 10a + 6p = 3.92 9a + 6p = 3.66 Subtracting (a = 0.26) 6a + 4p = 2.44 OC	6.1(0) or 3.92 - or 1.96 - 1.22 -	- 5.88 (= 0.22) oe - 3.66 (= 0.26) oe - 1.22 (= 0.74) oe and - "0.74" (= 0.48)			a or p: coefficients of a or p the same and correct operation to eliminate selected variable (condone any one arithmetic error) or to find the cost of 1 apple and 1 pear
	E.g. 5a + 3("0.22) or 3a + 2("0.22) E.g a + p = 0.48	") = 1.96 ") = 1.22 0e	E.g. 5("0.26") + 3 <i>p</i> = 196 or 3("0.26") + 2 <i>p</i> = 1.22	E.g. $3 \times 0.$ 1.96 - "1.3(0 or $5 \times 0.$ 1.96 - "0.66" or Apple	22 (= 0.66) - "0.66" (= 1.3(0)) 0)" \div 5 (= 0.26) 26 (= 1.3(0)) - "1.3(0)" (= 0.66) " \div 3 (= 0.22) e and pear is 0.48 oe			M1 (dep on M2) for substituting their value found (must be > 0) of one variable into one of the equations or for repeating above method to find second variable or for third working column allow $_{k(a + p) = k(0.48)}$ or for a complete arithmetical method to find the other value
	10¥"0.26"+	10¥"0.22" (or $(a + p =) 0.48 \neq 10$ of or	[k(a + p)]	$=]k(\overline{0.48}) \underbrace{\underbrace{10}}_{k}$			M1 (dep on M3) can be implied by 10(a + p) provided a and p must be > 0
	Working requ	uired				4.8(0)		A1 dep M2
								Total 5 marks

Q	Working	Answer	Mark	Notes
---	---------	--------	------	-------

15	(a)	0.8, 2.6, 1.9, 1.6, 0.3	Correct histogram	3	B3 fully correct histogram
					(B2 for at least 3 correct frequency densities or at least 3 correct bars or all five bars of correct width with heights in the correct ratio
					B1 for 2 correct frequency densities or 2 correct bars – but these bars must be of different widths, ie not 1 st and 3rd) or three bars of correct width with heights in the correct ratio
	(b)			2	M1 for $\frac{n}{40}$ where $n < 40$ or for $\frac{4}{m}$ where $m > 4$
		Correct answer scores full marks (unless from obvious incorrect working)	$\frac{4}{40}$		A1 for $\frac{4}{40}$ oe If M0 then SCB1 for $\frac{2}{35}$ (or 0.057)
					Total 5 marks

Q	Working	Answer	Mark	Notes
16 (a)	$1.75 \times 10^6 \div 2.4 \times 10^7$ or		3	M1
	1 750 000 ÷ 24 000 000 oe eg $\frac{1.75}{24}$			
	0.0729(16) or 0.072 or 0.073 or for $\frac{7}{96}$ or 7.29(16)% or 7.2% or 7.3%			A1
	Correct answer scores full marks (unless from obvious incorrect working)	7.3×10^{-2}		A1 accept 7.3×10^{-2} or better (7.29(16) × 10 ⁻²)
(b)	$2.4 \times 10^7 \times 5.01 \times 10^{21} \div 3$ oe		2	M1
	Correct answer scores full marks (unless from obvious incorrect working)	4×10^{28}		A1 accept 4×10^{28} , 4.0×10^{28} , 4.01×10^{28} , 4.008×10^{28}
				Total 5 marks

Q	Working	Answer	Mark	Notes
7	LW = 180 oe (9LW = 1620) or 4L × (L + W) = 1620 oe or 5W × (L + W) = 1620 oe or 4L = 5W oe ($L = \frac{5}{4}W$ oe or $W = \frac{4}{5}L$ oe)		5	M2 for any two correct equations from (i) LW = 180 oe (9LW = 1620) (ii) 4L × (L + W) = 1620 oe (iii) 5W × (L + W) = 1620 oe (iv) 4L = 5W oe ($L = \frac{5}{4}W$ oe or $W = \frac{4}{5}L$ oe) (M1 for one correct equation or 1620 + (= 180))
	$L \neq "\frac{4}{5}L" = "180" \text{ oe or } W \neq "\frac{5}{4}W" = "180" \text{ oe or } $ $4L \neq \hat{E}L + \frac{4}{5}L\hat{z} = 1620 \text{ oe or } $ $5W \neq \hat{E}\frac{5}{4}W + W\hat{z} = 1620 \text{ oe or } $ $9L\hat{E}, \frac{4}{5}L'\hat{z} = 1620 \text{ oe or } 9\hat{E}, \frac{5}{4}W'\hat{z}W = 1620 \text{ oe or } $			M1 for a correct equation in terms of o variable only

 $4\frac{\hat{E}}{W}\frac{180}{W} = \frac{\hat{z}^2}{\hat{z}^2} + 4("180") = 1620$ oe or

Correct answer scores full marks (unless from

oe

 $5("180") + 5 \hat{E} \frac{180}{L} "\hat{\tilde{z}}^2 = 1620$

obvious incorrect working)

L = 15

and

W = 12

15

A2 for both correct

(A1 for one correct)

dep on M3

Award 4 marks for L = 12 and W = 15

Total 5 marks

O Working Answer Mark Notes					
	Q	Working	Answer	Mark	Notes

18	eg		6	M1 for using the formula for the volume
_	4^{2} 4 $\hat{E}x^{3}$		-	of a sphere correctly and equating it to
	$\frac{1}{3}\pi r^3 = 288\pi \text{ oe } \frac{1}{3}p\frac{4}{12}\tilde{z} = 288p \text{ oe}$			288π
	x = 12			A 1
	x - 12			AI
	$\sqrt{(5 \times 12')^2 + (0.5 \times 12')^2} (= 6\sqrt{101} = 60.299)$ oe			M1 (dep on first M1 and using their value
	or			for x) for using Pythagoras to find the perp height of faces CAD or BAE
	$(OC =)0.5\sqrt{24'^2 + 12'^2} (= 6\sqrt{5})$ and $AC = \sqrt{(6\sqrt{5})'^2 + 60'^2} (= 6\sqrt{105})$			or
				a correct method to find angle <i>CAD</i> or
	and $\sqrt{(6\sqrt{105})^2 - (12)^2} (= 6\sqrt{101})$ oe			BAE
	$\sqrt{(5 \times 12')^2 + (1 \times 12')^2} = 12\sqrt{26} = 61.188)$ oe			M1 (dep on first M1 and using their value
	or			for x) for using Pythagoras to find the perp height of faces ABC or AED
	$(OC =)0.5\sqrt{24'^2 + 12'^2} = 6\sqrt{5}$ and $AC = \sqrt{(6\sqrt{5})'^2 + 60'^2} = 6\sqrt{105}$			or
	and $\frac{1}{100} \frac{1}{100} $			a correct method to find angle <i>BAC</i> or
	and $\sqrt{(6\sqrt{105})^2 - 6^2} (= 12\sqrt{26})$ be			
	$(12' \times 2(12')) + 2(0.5 \times 12' \times 12\sqrt{26'}) + 2(0.5 \times 212' \times 6\sqrt{101'})$ oe			M1 (dep on first M1 using their value for
	eg			triangle) for working out the total surface
	$288'+2\times 72\sqrt{26}'+2\times 72\sqrt{101}'$ or			area of the pyramid
	'288' + 2 × '367.129'+ 2 × '723.59' oe			
	Correct answer scores full marks (unless from obvious incorrect working)	2469		A1 2469 - 2470
				Total 6 marks

Q	Working	Answer	Mark	Notes
---	---------	--------	------	-------

				Edexcel averages: scores of candidates who achieved grade:								
	Mean	Max	Mean									
Qn	score	score	%	ALL	9	8	7	6	5	4	3	U
1	3.42	5	68	3.42	4.93	4.61	4.07	2.99	1.83	0.63	0.21	0.13
2	2.30	3	77	2.30	2.92	2.70	2.41	2.27	1.79	1.34	0.94	0.53
3	2.95	4	74	2.95	3.88	3.54	3.09	2.73	2.42	1.63	0.67	0.22
4	3.53	5	71	3.53	4.83	4.37	3.85	3.26	2.54	1.41	0.65	0.04
5	2.01	3	67	2.01	2.73	2.51	2.13	1.79	1.56	0.92	0.34	0.11
6	3.20	5	64	3.20	4.88	4.43	3.45	2.61	1.62	0.60	0.14	0.00
7	2.65	4	66	2.65	3.84	3.46	2.73	2.30	1.62	0.87	0.54	0.29
8	1.90	3	63	1.90	2.89	2.33	1.86	1.54	1.17	0.75	0.51	0.04
9	3.01	5	60	3.01	4.61	3.93	2.98	2.32	1.63	1.06	0.65	3.01
10	1.68	3	56	1.68	2.84	2.54	1.86	1.02	0.32	0.15	0.02	0.00
11	2.63	5	53	2.63	4.60	3.74	2.78	1.49	0.66	0.22	0.08	0.02
12	2.62	4	66	2.62	3.53	3.01	2.46	2.36	2.07	1.71	1.08	0.62
13	2.53	5	51	2.53	3.86	3.25	2.77	1.97	1.34	0.73	0.24	0.26
14	2.72	5	54	2.72	4.66	3.83	2.67	1.64	1.06	0.37	0.10	0.02
15	2.50	5	50	2.50	4.42	3.25	2.26	1.72	0.99	0.46	0.15	0.06
16	1.64	5	33	1.64	3.03	2.03	1.49	1.00	0.61	0.34	0.19	0.00
17	1.90	5	38	1.90	3.75	2.01	1.25	1.12	0.91	0.68	0.35	0.28
18	1.45	6	24	1.45	3.20	1.66	1.12	0.57	0.23	0.12	0.02	0.00
	44.64	80	56	44.64	69.40	57.20	45.23	34.70	24.37	13.99	6.88	5.63

Suggested grade boundaries

Grade	9	8	7	6	5	4	3
Mark	63	51	43	30	19	11	4

17