8

1	(a)	$5 \times (-2)^2 - (-2)^3 (= 208)$		2	M1	for correct expression or at least one of 20 or 5×4 or 8 or $(+)$ 8
			28		A1	
	(b)		2p(4p-1)	2	B2	B1 for $p(8p-2)$ or $2(4p^2-p)$ or $2p(4p-1)$ with two terms inside the bracket with one term correct.
	(c)		$12t^2 - 8t$	2	B2	B1 for $12t^2$ or $-8t$
	(d)	$5x^2 + 20x - 2x - 8$		2	M1	for 4 correct terms (ignoring signs) or 3 correct terms with correct signs. or $5x^2 + 18x +$ or $ + 18x - 8$
			$5x^2 + 18x - 8$		A1	
						Total 8 marks

Q		Working	An	swer	Mar	k Notes
2	eg $(x \pm 20)(x \pm 1)$ -	$\frac{-(-21) \pm \sqrt{(-21)^2 - 4 \times 1 \times 20}}{2 \times 1}$ $\mathbf{r} \left(x - \frac{21}{2} \right)^2 - \left(\frac{21}{2} \right)^2 + 20 = 0$		3	§ 0	f factorising, allow brackets which expanded give 2 out of 3 terms correct – if using formula or completing the square allow one sign error and some simplification – allow as far as eg $\frac{21 \pm \sqrt{441 - 80}}{2} \text{ or } \text{ eg} \left(x - \frac{21}{2}\right)^2 - \frac{361}{4} = 0 \text{ oe}$
		g $\frac{21 \pm \sqrt{441 - 80}}{2}$ $r \frac{21 \pm \sqrt{361}}{2}$ or $\frac{21 \pm 19}{2}$ $r x = \pm \sqrt{\frac{361}{4} + \frac{21}{2}}$ oe			f c s	dep on M1 For correct factorisation, or a correct expression for x if completing the square. or a correct substitution into quadratic formula with some processing.
	•		1, 20			For both correct values, lep on 1st M1 with no incorrect working.
						Total 3 marks

Q	Working	Answer	Mark	Notes
3	eg. $10x + 35y = 85$ 10x + 6y = -2 with the operation of subtraction or $29y = 87$ or $6x + 21y = 51$ 35x + 21y = -7 with the operation of subtraction or $29x = -58$ or eg $5\left(\frac{17 - 7y}{2}\right) + 3y = -1$ or eg $5x + 3\left(\frac{17 - 2x}{7}\right) = -1$		4	M1 for correct method to eliminate one variable – multiplying one or both equations so the coefficient of x or y is the same in both, with the correct operation to eliminate one variable (condone one arithmetic error) or isolating x or y in one equation and substituting into the other (condone one arithmetic error).
				M1 dep 1st M1 Substitute found value into one equation or correct method to eliminate second unknown.
		$ x = -2 \\ y = 3 $		A1 dep 1st M1 A1
		•		Total 4 marks

Q	Working	Answer	Mark	Notes
	-			
4	E.g. $x2 + 4x - 2x - 8 = x2 + 2x - 8$ or $x2 - 2x + x - 2 = x2 - x - 2$ or $x2 - 4x + x + 4 = x2 + 5x + 4$ E.g. $x3 + 2x2 - 8x + x2 + 2x - 8$ or $x3 + 4x2 - 2x2 - 8x + x2 + 4x - 2x - 8$ or $x3 - x2 - 2x + 4x2 - 4x - 8$ or $x3 - 2x2 + x2 - 2x + 4x2 - 8x + 4x - 8$ or		3	M1 for multiplying out two brackets correctly with no more than one error M1 for at least 3 terms correct out of maximum of 6 terms or for at least 4 terms correct out of maximum of 8 terms
	x3 + 5x2 + 4x - 2x2 - 10x - 8 or $x3 + 4x2 + x2 + 4x - 2x2 - 8x - 2x - 8$			
		x3 + 3x2 - 6x - 8		A1
				Total 3 mar

					Notes
_					
5 a	ı	e.g. $A + 5z = \frac{c}{y}$ oe or		2	M1 for a correct first step e.g. add 5z to both sides
		Ay = c - 5yz oe			or multiply all terms by <i>y</i>
			c = y(A + 5z)		Al oe
b)		1	1	B1
c		$(x\pm3)(x\pm8)$		2	M1 or for $(x \pm a)(x \pm b)$ where $ab = 24$ or $a + b = -11$
			(x-3)(x-8)		A1
			, , , , , ,		Total 5 marks
6 ((a)		81k ⁸	2	B2 B1 for 81 or k^8 seen in their final answer.
((b)		$7m^4n^6$	2	B2 B1 for $7m^4$ or n^6 in a product with no other terms in m or n
					Total 4 marks

Q	Working	Answer	Mark	Notes
7	E.g. $\frac{3(2x+1)+4(x-2)}{12}$ or $\frac{3(2x+1)}{12} + \frac{4(x-2)}{12}$		3 M1	for expressing both fractions correctly with a common denominator. Allow as two separate fractions.
	E.g. $\frac{6x+3+4x-8}{12}$		M1	for removing brackets correctly in a correct single fraction
		$\frac{10x-5}{12}$	A1	accept $\frac{5(2x-1)}{12}$
				Total 3 marks

Q	Working	An	iswer	Ma	ark	Notes
8	e.g. $\frac{16}{5}$ and $\frac{11}{6}$ or $\frac{96}{30}$ and $\frac{55}{30}$		3	M1	for two corre	ect improper fractions
	e.g. $\frac{16^8}{5} \times \frac{11}{6^3}$ or $\frac{176}{30}$ or $\frac{5280}{900}$ oe					celling or multiplication of and denominators without cancelling
	e.g. $\frac{16}{5} \times \frac{11}{6} = \frac{176}{30} = \frac{88}{15} = 5\frac{13}{15}$ or $\frac{16}{5} \times \frac{11}{6} = \frac{176}{30} = 5\frac{26}{30} = 5\frac{13}{15}$ or $\frac{16^8}{5} \times \frac{11}{6^3} = \frac{88}{15} = 5\frac{13}{15}$ or $\frac{96}{30} \times \frac{55}{30} = \frac{5280}{900} = \frac{88}{15} = 5\frac{13}{15}$ NB: a student can show initially that $5\frac{13}{15} = \frac{88}{15}$ and they need to show that LHS $=\frac{88}{15}$	shown			working – emultiplication $\frac{88}{15}$ or $5\frac{2}{3}$ or correct cancer	for conclusion to $5\frac{13}{15}$ from correct either sight of the result of the on e.g. $\frac{176}{30}$ must be seen and equated $\frac{26}{30}$ elling prior to the multiplication to $\frac{88}{15}$ ecimals scores no marks
						Total 3 marks

9	$4e^5f^3$	2	B2	(B1 for 2 out of 3 terms correct in a 3 term product)
				Total 2 marks

Q	Working	Answer	Mark	Notes
10	eg $(2^3)^2 \times \sqrt[3]{(2^2)^6}$ or $(2^3)^2 \times (4)^{\frac{6}{3}}$ or $4^3 \times 4^2$ or 2^6 or 2^4 seen or $2^6 \times 16$ or 64×4^2 or $8^2 \times 4^2$ or $8^2 \times 16$ or 64×4^2 $2^6 \times (2^{12})^{\frac{1}{3}}$ or 1024 or 32^2 or 4^5	× 16		M1 a correct first stage. M1 dep on 1st M mark.
	or $2^6 \times 2^4$	210		A1 dependent on first M1 isw if 2 ¹⁰ seen but then 10 given as answer.
				Total 3 marks

11	(a)	vertices at (-9, 6) (-9, 9) (-3, 9) (-6, 6)	Shape in correct position	2	B2	B1 for congruent shape in correct orientation but wrong position or quadrilateral with 2 or 3 vertices correct.
	(b)	vertices at (7, 3) (10, 6) (13, 6) (13, 3)	Shape in correct position	1	B1	
	(c)		enlargement scale factor 2 centre (-3, 3)	3	B1 B1 B1	for enlargement, enlarge, etc so long as no mention of rotation, reflection or translation, flip, move etc. SF 2, double, two times etc. (-3, 3) stated. Accept about, from etc. with no mention of line, or column vector.
						Total 6 marks

Q Working Answer Mark Notes	Q	Working	Answer	Mark	Notes
-------------------------------------	---	---------	--------	------	-------

12	$\frac{5}{x+2} + \frac{3}{x(x+2)}$ (= 2)		5	M1	Factorising $x^2 + 2x$ in correct expression on LHS or for writing the two fractions over a common
	or $\frac{5x}{x^2 + 2x} + \frac{3}{x^2 + 2x}$ (= 2)				denominator.
	$\frac{5x+3}{x(x+2)} = 2 \text{ or } \frac{5x+3}{x^2+2x} = 2$			M1	Correct simplified single fraction = 2 or correct equation with no fractions.
	or $5x + 3 = 2x(x + 2)$ oe or $5x + 3 = 2x^2 + 4x$ oe			N/1	
	$2x^2 - x - 3 = 0$			M1	Correct 3 term quadratic
	or $\frac{(2x-3)(x+1) (=0)}{-1 \pm \sqrt{(-1)^2 - 4 \times 2 \times (-3)}}$ $\sqrt{(x-\frac{1}{4})^2 - \frac{1}{16} - \frac{3}{2}} = 0 \text{ oe}$			M1ft	independent For solving <i>their</i> 3 term quadratic equation using any correct method. If factorising, allow brackets which expanded give 2 out of 3 terms correct (if using formula or completing the square allow one sign error and some simplification – allow as far as eg $\frac{1 \pm \sqrt{1 + 24}}{4} \text{ or eg } \left(x - \frac{1}{4}\right)^2 = \frac{25}{16} \text{ oe}$
		1.5 and -1		A1	oe dep on M3
					Total 5 marks

Q	Working	Answer	l	Mark	Notes
13	E.g. $(x-5)^2 - 5^2 (+40)$ or $(x-5)^2 - 25 (+40)$ $(x^2 + 2ax + a^2 (+b^2))$ $2a = -10$ or $a = -5$		2	M1	for a correct first step or for equating coefficients
		$(x-5)^2+15$		A1	accept $a = -5$, $b = 15$ SC B1 for $(-x+5)^2 + 15$ or $(5-x)^2 + 15$
					Total 5 marks

14	$(n^{-\frac{4}{5}} =) \frac{1}{16}$ or 0.0625 oe	$\operatorname{eg}\left(n^{-\frac{1}{5}}\right)^4 = \left(\frac{1}{2}\right)^4$		4	M1	for sight of $\frac{1}{16}$ oe, even if raised to an incorrect power. or for algebraic approach, separating out the 4, or 5 or -1 in the power
	$(n =) 16^{\frac{5}{4}} \text{ or } 0.0625^{-\frac{5}{4}} \text{ oe}$ $(n =) 2^{5} \text{ or } \sqrt[4]{1048576} \text{ oe}$ $\text{or } \frac{1}{0.0625^{\frac{5}{4}}} \text{ or } \left(\frac{1}{16}\right)^{-\frac{5}{4}}$	$eg (n =) \left(\frac{1}{2}\right)^{-5}$			M2	for a correct expression for <i>n</i> (M1 for one correct algebraic stage $eg \ n^{-\frac{1}{5}} = \frac{1}{2})$
			32		A 1	
						Total 7 marks

Q	Working			Answe	r Mark	Notes
15	x = 4.57 and $100x = 457.57$ or $10x = 45.757$ and $1000x = 4575.7$ or $x = 0.57$ and $100x = 57.57$ or $10x = 5.757$ and $1000x = 575.7$	QI.	2	M1	a whole number of eg $100x = 457.57$ 10x = 45.757 v not shown then a $1000x = 4575.7$ t or $4 + 0.5757$ and e intention to subtr	x = 0.57, 100x = 57.57 with act.
	E.g. $100x - x = 457.57 4.57 = 453$ $\frac{453}{99} = \frac{151}{33} \text{ or } 4\frac{19}{33}$ or $1000x - 10x = 4575.7 45.757$ $\frac{4530}{990} = \frac{151}{33} \text{ or } 4\frac{19}{33}$ or $100x - x = 57.57 0.57 = 57$ $\frac{57}{99} \text{ or } \frac{19}{33} \text{ (so)}$ $4.57 = 4\frac{19}{33}$ $1000x - 10x = 575.7 5.757 = \frac{570}{570} \text{ and } \frac{57}{990} \text{ or } \frac{19}{33} \text{ (so)}$ $4.57 = 4\frac{19}{33}$	Shown		A1	for completion t	
						Total 2 marks

	Q	Working	Answer	Mark	Notes
--	---	---------	--------	------	-------

16	e.g. $\binom{5}{3} - \binom{-2}{4}$ or $\binom{5}{3} + \binom{2}{-4}$		2	M1 or for $\begin{pmatrix} 7 \\ a \end{pmatrix}$ where $a \neq -1$ or $\begin{pmatrix} b \\ -1 \end{pmatrix}$ where $b \neq 7$
		$\begin{pmatrix} 7 \\ -1 \end{pmatrix}$		A1
				Total 2 mark

17	$y \ge 1$ oe $x \le 3$ oe $y \le 3x - 2$ oe	3	B1 B1 B1	Allow $1 \le y \le 7$ Allow $1 \le x \le 3$ Condone < and > in place of \le and \ge throughout.
				SC B1 if no marks awarded, recognition of lines $x = 3$ and $y = 1$. Allow incorrect inequality and condone use of equals signs eg $y < 1, x = 3$ may be seen on diagram.
				Total 3 marks

Q	Working	Answer		Iark	Notes
18 a		$2^6 \times 3 \times 11^4$	2	B2	oe, accept 2811072
				B1	for $2^a \times 3^b \times 11^c$ oe where two of a , b and c are correct
b		$2^9 \times 3^5 \times 11^8$	2	B2	cao
				B1	for $2^a \times 3^b \times 11^c$ oe where two of a , b and c are correct or 2.666× 10^{13} or an equivalent expression for e.g. $2^2 \times 2^7 \times 3^5 \times 11^3 \times 11^5$
					Total 4 marks

|--|

			$x = \frac{19}{2}, y = \frac{3}{4}$ $x = -7, y = -2$		A1	Dep on first M1 Must be paired and labelled correctly
	$(y =) \frac{3}{4}$ and $(y =) -2$	$(x =) \frac{19}{2}$ and $(x =) -7$			A1	Dep on first M1 for having two correct <i>x</i> values or two correct <i>y</i> values
		$4\left[\left(x - \frac{10}{8}\right)^2 - \left(\frac{10}{8}\right)^2\right] = 266 \text{ oe}$				simplification – allow as far as $\frac{-5 \pm \sqrt{25 + 96}}{8}$ or $\frac{5 \pm \sqrt{25 + 1064}}{4}$
	E.g. $(4y-3)(y+2) (=0)$	E.g. $(2x-19)(x+7) (= 0)$			M1	(dep on M1) for a complete method to solve their 3-term quadratic equation (allow one sign error and some
	E.g. $4y^2 + 5y - 6 = 0$ oe $4y^2 + 5y = 6$	E.g. $4x^2 - 10x - 266 (= 0)$ oe $4x^2 - 10x = 266$			A1	(dep on M1) writing the correct quadratic expression in form $ax^2 + bx + c$ (= 0) allow $ax^2 + bx = c$
19	$y(6y+5) - 2y^2 = 6$	$x\left(\frac{x-5}{6}\right) - 2\left(\frac{x-5}{6}\right)^2 = 6$		5	M1	for substitution of linear equation into quadratic or multiplying linear equation by y e.g. $xy - 6y^2 = 5y$ and intention to subtract the two equations

Q	Working	Answer	Mark	Notes
20	$(4^{k+3} =)(2^2)^{k+3}$ oe or $(16 =) 2^4$	4	M1	for $\left(2^2\right)^{k+3}$ oe or 2^4 or
	$(16 =) 4^2 \text{ or } (2^k =) \left(4^{\frac{1}{2}}\right)^k \text{ oe }$			4^2 or $\left(4^{\frac{1}{2}}\right)^k$ oe or
	$(4^{k+3} =) \left(16^{\frac{1}{4}}\right)^{k+3}$ oe or $(2^k =) \left(16^{\frac{1}{4}}\right)^k$ oe			$\left(16^{\frac{1}{4}}\right)^{k+3}$ oe or $\left(16^{\frac{1}{4}}\right)^k$ oe
	$(4^{k+3} =)(2^2)^{k+3}$ oe and $(16 =)2^4$		M1	for $(2^2)^{k+3}$ oe and 2^4 or
	$(16 =) 4^2$ and $(2^k =) \left(4^{\frac{1}{2}}\right)^k$ oe			4^2 and $\left(4^{\frac{1}{2}}\right)^k$ oe or
	$(4^{k+3} =) \left(16^{\frac{1}{4}}\right)^{k+3}$ oe and $(2^k =) \left(16^{\frac{1}{4}}\right)^k$ oe			$\left(16^{\frac{1}{4}}\right)^{k+3}$ oe and $\left(16^{\frac{1}{4}}\right)^k$ oe
	E.g. $2k + 6 = 4 + k$ or		M1	for a correct linear equation in k
	$k+3=2+\frac{1}{2}k$ or			
	$\frac{1}{2}(k+3) = 1 + \frac{1}{4}k$			
		-2	A1	dep on at least M2
				Total 9 mar

Q	Working		Answer		Marl	Notes
21	$\left(\frac{-1+2}{2}, \frac{5+10}{2}\right)$ or $(0.5, 7.5)$ oe			5	M1	
	$\frac{10-5}{2-(-1)} \left(=\frac{5}{3}\right)$ oe				M1	
	$m \times \frac{5}{3} = -1 \text{ oe or } m = -\frac{3}{5} \text{ oe}$				M1	ft their gradient for use of $m_1 \times m_2 = -1$
	$7.5' = -\frac{3}{5} \times 0.5' + c$ or $c = 7.8$ oe or				M1	ft dep on first M1 and third M1
	$y-'7.5' = '-\frac{3}{5}'(x-'0.5')$					
		5y + 3x	= 39		A1	oe where p , q and r must be integers
						Total 5 marks

Q Worki	ng Answer	Mark	Notes
---------	-----------	------	-------

				Edexcel averages: scores of candidates who achieved grade:								
	Mean	Max		Luckeer averages. Scores of candidates who achieved grade.								
Qn	score	score	Mean %	ALL	9	8	7	6	5	4	3	U
1	7.34	8	92	7.34	7.93	7.71	7.69	7.25	6.42	4.52	2.46	0.72
2	2.49	3	83	2.49	2.91	2.80	2.69	2.07	1.65	0.62	0.18	0.00
3	3.40	4	85	3.40	3.96	3.90	3.53	3.26	2.31	0.92	0.09	0.00
4	2.47	3	82	2.47	2.95	2.84	2.61	2.09	1.47	0.96	0.13	0.00
5	4.02	5	80	4.02	4.86	4.56	4.08	3.45	2.70	1.42	0.61	0.14
6	3.27	4	82	3.27	3.79	3.57	3.25	2.78	2.08	1.62	0.77	0.14
7	2.39	3	80	2.39	2.86	2.57	2.39	1.95	1.68	1.15	0.22	0.00
8	2.27	3	76	2.27	2.63	2.46	2.32	2.16	1.45	1.24	0.87	0.29
9	1.60	2	80	1.60	1.94	1.81	1.52	1.31	0.85	0.58	0.22	0.00
10	2.29	3	76	2.29	2.94	2.68	1.99	1.57	1.08	0.27	0.23	0.29
11	3.98	6	66	3.98	5.30	4.54	3.34	2.83	2.27	1.46	0.60	0.43
12	3.12	5	62	3.12	4.55	3.62	2.60	1.55	1.00	0.15	0.09	0.00
13	1.30	2	65	1.30	1.90	1.57	0.99	0.67	0.20	0.13	0.00	0.00
14	2.51	4	63	2.51	3.75	2.66	1.93	1.45	0.74	0.31	0.18	0.14
15	1.16	2	58	1.16	1.65	1.32	0.93	0.50	0.35	0.07	0.00	0.00
16	1.20	2	60	1.20	1.86	1.28	0.91	0.57	0.32	0.11	0.04	0.00
17	1.82	3	61	1.82	2.68	2.14	1.36	0.64	0.39	0.13	0.05	0.00
18	2.35	4	59	2.35	3.39	2.39	1.79	1.33	0.78	0.51	0.00	0.00
19	2.94	5	59	2.94	4.56	3.49	2.06	1.15	0.61	0.15	0.00	0.29
20	2.33	4	58	2.33	3.79	2.56	1.20	0.96	0.22	0.11	0.00	0.00
21	2.20	5	44	2.20	3.97	2.19	0.84	0.57	0.22	0.29	0.22	0.00
	56.45	80	71	56.45	74.17	62.66	50.02	40.11	28.79	16.72	6.96	2.44

0	Working	Answer	Mark	Notes
×.	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 1110 11 01	1.144111	1,000

Suggested grade boundaries

Grade	9	8	7	6	5	4	3
Mark	68	56	45	34	23	12	5