Q	Working	Answer	Mark	Notes
---	---------	--------	------	-------

1	(b)	$(-5)^2 - 4 \times -5$ oe e.g. $25 + 20$		2	M1	for a correct substitution
			45		A1	
			-	-	-	
2	(c)	$5x-3 = 4(2x+3)$ oe or $\frac{5x}{4} - \frac{3}{4} = 2x+3$ oe		3	M1	for correctly removing the denominator, condone missing brackets
		e.g. $5x - 8x = 12 + 3$ or $-3x = 12 + 3$ or $8x - 5x = -12 - 3$ or $3x = -12 - 3$ or $-\frac{3}{4} - 3 = 2x - \frac{5x}{4}$ or $-\frac{15}{4} = \frac{3x}{4}$			M1	for a correct rearrangement with terms in x on one side and numbers on the other, allow correct rearrangement of their equation in the form $ax + b = cx + d$
			-5		A1	dep on at least M1 SCB2 for an answer of x = -2 coming from $5x - 3 = 8x + 3$
						or $x = 5$ coming from $5x - 3 = 2x + 12$
						Total 3 marks

3 (a)	0	1	B1 condone 150 [°]
(b)	-2	1	B1 condone 3 ⁻²
			Total 2 marks

Q	Working	Answer	Mark		Notes
4	$\frac{e.g. 35x + 10y = 27.5 \text{ or } 21x + 6y = 16.5}{\frac{6x - 10y = 34}{41x} = 61.5} \text{ or } 21\frac{x - 35y = 119}{41y = -102.5}$ e.g. $3x - 5\left(\frac{5.5 - 7x}{2}\right) = 17 \text{ or } 7\left(\frac{17 + 5y}{3}\right) + 2y = 5.5 \text{ oe}$		4		for a correct method to eliminate x or y: coefficients of x or y the same and correct operator to eliminate selected variable (condone any one arithmetic error in multiplication) or writing x or y in terms of the other variable and correctly substituting.
		x = 1.5 or $y = -2.5$		A1 o	oe, dep on M1
				t c t	(dep on 1 st M1) for a correct method to find other variable by substitution of found variable into one equation or for repeating the above method to find the second variable.
		x = 1.5 and $y = -2.5$		A1 0	oe, dep on M1
					Total 4 marks

Q	Working	Answer	Mark	Notes
---	---------	--------	------	-------

5 (a)			2	M 1	for $(x \pm 6)(x \pm 7)$
		(x+6)(x-7)		A1	for $(x + 6)(x - 7)$ or $(x - 7)(x + 6)$ isw roots given if candidate solves the quadratic = 0
(b)	3x - 8x < 3 - 15 or 15 - 3 < 8x - 3x		3	M1	accept as equation or with the wrong inequality sign.
	-5x < -12 or $12 < 5x$			M1	accept as equation or with the wrong inequality sign.
		x > 2.4		A1	Accept 2.4 < x or $x > \frac{12}{5}$ oe allow (- ∞ ,2.4)
					award M1 M1 A0 for 2.4 with = sign or no inequality or incorrect inequality sign.
					Total 5 marks

(Q	Working	Answer	Mark	ζ.	Notes	
6	(4x+1)($(x-3) = 4x^{2} - 12x + x - 3(= 4x^{2} - 11x - 3)$ $(5x+6) = 20x^{2} + 24x + 5x + 6(= 20x^{2} + 29x + 6))$ $(5x+6) = 5x^{2} + 6x - 15x - 18(= 5x^{2} - 9x - 18))$			3	M1	for multiplying 2 brackets with at least 3 out of 4 terms correct
	(x-3)(2	$(4x^{2} - 11x - 3) = 20x^{3} - 55x^{2} - 15x + 24x^{2} - 66x - 1$ $(20x^{2} + 29x + 6) = 20x^{3} + 29x^{2} + 6x - 60x^{2} - 87x - 14$ $(5x^{2} - 9x - 18) = 20x^{3} - 36x^{2} - 72x + 5x^{2} - 9x - 18$				M1	(dep) for multiplying the product of the first 2 brackets (ft from the 1 st stage) by the 3 rd bracket, and getting at least 3 out of 6 or 4 out of 8 terms correct
			$20x^3 - 31x^2 - 81x^2$	x - 18		A1	
	Alterna	tive					
	$20x^3 + 2$	$4x^2 - 60x^2 + 5x^2 - 15x + 6x - 72x - 18$				B2	for at least 6 out of 8 terms correct
						(B1	for 4 or 5 out of 8 correct terms)
			$20x^3 - 31x^2 - 81$	x - 18		A1	
							Total 3 marks

	Q	Wo	rking		Answer	•	Mark	Notes
		1						
7	(a)		9, 28, 45, 63, 76, 80	1	B1			
	(b)			2		with a cu If not B2 only one curve or OR for 5 joined OR for 5 each inter	trve or line then B1 f arithmetic line segme or 6 poin or 6 of th erval (not a	ph with points at ends of intervals and joined e segments for 5 or 6 of their points (ft from a table with c error) at ends of intervals and joined with a ents ts plotted correctly at ends of intervals not neir points from table plotted consistently within at upper ends of intervals) at their correct with a curve or line segments
	(c)	e.g. reading across from 40 and reading down		2	M1	ft readin	g from a c	f graph provided method is shown
			35 - 38		A1	ft from t	heir cf gra	ph
								Total 5 marks

8	e.g. $\frac{15}{4}$		3	M1 for $3\frac{3}{4}$ expressed as an improper fraction
	e.g. $\frac{15^5}{4} \times \frac{7}{9^3}$ OR $\frac{105}{36}$ oe			M1 correct cancelling or multiplication of numerators and denominators without cancelling
	e.g. $\frac{15^5}{4} \times \frac{7}{9^3} = \frac{35}{12} = 2\frac{11}{12}$ or $\frac{15}{4} \times \frac{7}{9} = \frac{105}{36} = \frac{35}{12} = 2\frac{11}{12}$ or $\frac{15}{4} \times \frac{7}{9} = \frac{105}{36} = 2\frac{33}{36} = 2\frac{11}{12}$	shown		A1 dep on M2, for conclusion to $2\frac{11}{12}$ from correct working – either sight of the result of the multiplication e.g. $\frac{105}{36}$ oe must be seen or correct cancelling prior to the multiplication to $\frac{35}{12}$ NB: use of decimals scores no marks
				Total 3 mark

Answer

Mark

Notes

Practice Tests Set 15 – Paper 1H mark scheme, performance data and suggested grade boundaries

Working

Q

9 (a)	33.75	1	B1 oe eg 33.750
(b)	33.85	1	B1 allow 33.849 or 33.849 ^r or "33.8499" do NOT allow 33.879 without
			indication of recurring "9" Total 2 marks

Q	Working	Answei	r	Mark	Notes
10 (a) (i) (ii)		40 <u>Angles</u> in <u>same</u> <u>segment</u> (are equal)	2	B1	cao (may be written on the diagram) or angles at the <u>circumference from</u> the same arc of the circle or angles on the <u>same arc of</u> the circle Alternatively: (two applications of) <u>Opposite</u> angles of a cyclic quadrilateral sum to 180°
(b)		140	1	B1	cao (may be written on the diagram)
					Total 3 marks

Q	Working	Answer	Ma	ark	Notes
11 (a)		(-4.5) 3 4.5 (3)	2	B2	for all correct
		1.5 (3) 10.5		(B 1	for any two correct)
					No points in table but correctly plotted
					on grid, award mark
(b)	(-3, -4.5) (-2,3) (-1,4.5) (0,3) (1,1.5) (2,3) (3,10.5)	Smooth curve	2	B2	for a correct smooth curve. Points or curve passing through correct values within half a small square.
				(B1	for at least 5 points plotted correctly; ft from table for plotting only provided B1 awarded in part (a))
(c)			2	M1	for drawing $y = -x - 1$
					with two correct points plotted and intersection with curve.
					or for stating $y = -x - 1$
					-
					or for $\frac{1}{2}x^3 - 2x + 3 = -x - 1$ seen
		-2.3 to -2.4		A1	ft their curve dep on M1 and line
					y = -x - 1 drawn
					Total 6 marks

Q	Working	Answer	Mark	Notes
12	$yn^2 = n^2 + d$ or $y = 1 + \frac{d}{n^2}$		4	M1
	$yn^2 - n^2 = d$ or $-d = n^2 - yn^2$ or $y - 1 = \frac{d}{n^2}$			M1
	$n^{2}(y-1) = d$ or $-d = (1-y)n^{2}$			M1 for factorising n^2 from a suitable expression.
				or $n^2 = \frac{d}{y-1}$
		$n = \sqrt{\frac{d}{y - 1}}$		A1 Accept $n = \sqrt{\frac{-d}{1-y}}$
				Penalise $\pm $
				Total 4 marks

Q	Working	Answer	Mark	Notes
13 (a)	$T = \frac{k}{m^2} \text{ or } Tm^2 = k$		3	M1 for a correct equation with a constant Do not allow constant = 1
	$30 \times 0.5^2 = k \text{ or } 30 = \frac{k}{0.5^2} \text{ or } k = 7.5 \text{ or } k = \frac{15}{2}$			M1 dep on M1 for correct substitution in a correct equation $M2$ for $k = 7.5$ or $k = \frac{15}{2}$
		$T = \frac{7.5}{m^2}$		A1 for $T = \frac{7.5}{m^2}$ or $T = \frac{15}{2m^2}$ SCB2 for $Tm^2 = 7.5$ or $Tm^2 = \frac{15}{2}$ or $m^2 = \frac{7.5}{T}$ or $m^2 = \frac{15}{2T}$
(b)		750	1	B1 cao
				Total 4 marks

Q Working Answer Mark Notes

Image: Correct bisector Image: All must see correct arcs					Total 2 marks
		Correct bisector		A1	must see correct arcs
these points meeting or for					1 0
142M1Arcs on BC, AB and arcs from	14		Z	IVI I	

15	$-3(x^2-4x)+7$ or $-3(x^2-4x-\frac{7}{3})$		4	M1	for factorising the expression to find b or $b = -3$ stated or shown clearly in answer.
	$-3[(x-2)^{2}] \text{ or } c = -2$ $-3[(x-2)^{2}-4]+7 \text{ or } -3[(x-2)^{2}-4-\frac{7}{3}]$			M1	or for <i>c</i> shown clearly in answer.
	$-3(x-2)^{2}+12+7 \text{ or } -3\left[\left(x-2\right)^{2}-\frac{19}{3}\right]$			M1	fully correct method.
		$19-3(x-2)^2$		A1	for $19-3(x-2)^2$ oe
					Total 4 marks

Q	Working	Answer	Mark	Notes
16 (a)	$(f(2.6) =) 5 \times 2.6 - 7 (= 6)$ or $gf(x) = \frac{5(5x - 7)}{5x - 7 + 4}$ oe		2	M1 for finding $f(2.6)$ or $gf(x)$
		3		A1
(b)	$5\left(\frac{5x}{x+4}\right) - 7 = 2$ or $\frac{5x}{x+4} = \frac{2+7}{5}$ oe		3	M1
	25x = 9(x+4) oe			M1 for removing the denominator $(x + 4)$ in a correct equation
		2.25		A1 oe
ALT (b)	$fg(x) = 2 \implies g(x) = f^{-1}(2) (=9/5)$ and attempt at f^{-1} or $f^{-1}(2)$	•		M1
	$x = g^{-1}("9/5")$			M1
		2.25		A1 oe
(c)	$y = \frac{5x}{x+4} \qquad \text{or} \qquad x = \frac{5y}{y+4}$ $y(x+4) = 5x \qquad x(y+4) = 5y$		3	M1
	e.g. $4y = x(5-y)$ or e.g. $4x = y(5-x)$			M1 for a correct rearrangement and factorising
		$\frac{4x}{5-x}$		A1 oe e.g. $\frac{-4x}{x-5}$
				Total 8 marks

17	$(y-4)^2 - (y-4) + y^2 = 10$ or $x^2 - x + (x+4)^2 = 10$	6	M1 for substituting linear equation into the quadratic equation
	$2y^{2}-9y+10 = 0$ or $2x^{2}+7x+6 = 0$		A1 for a correct equation in the form $ax^2 + bx + c = 0$ or $ax^2 + bx = -c$ or equations of the same form by in y
	$\frac{(2y-5)(y-2) = 0 \text{ or}}{\frac{-9 \pm \sqrt{(-9)^2 - (4 \times 2 \times 10)}}{2 \times 2}} \text{ or}}{\frac{(2x+3)(x+2) = 0 \text{ or}}{-7 \pm \sqrt{7^2 - (4 \times 2 \times 6)}}}{2 \times 2}$		M1ft For solving <i>their</i> 3 term quadratic equation using any correct method. If factorising, allow brackets which expanded giv 2 out of 3 terms correct (if using formula or completing the square allow one sign error and some simplification – allow as far as eg $\frac{-7 \pm \sqrt{49-48}}{4} \text{ or eg } \left(x + \frac{7}{4}\right)^2 - \frac{1}{16} = 0 \text{ oe}$ $\frac{9 \pm \sqrt{81-80}}{4} \text{ or eg } \left(y - \frac{9}{4}\right)^2 - \frac{1}{16} = 0 \text{ oe}$
	(- 1.5, 2.5) and (- 2, 2)		A1 for both pairs of coordinates oe eg $\left(\frac{-3}{2}, \frac{5}{2}\right)$ accept coordinates listed as pairs, ie x_1, y_1, x_2, y_2
	$\sqrt{('-1.5'-'-2')^2+('2.5'-'2')^2}$		M1 dep on M1 for finding length of <i>AB</i>
		$\frac{\sqrt{2}}{2}$	A1 dep M3
			Total 6 mark

Answer

Mark

Notes

Practice Tests Set 15 – Paper 1H mark scheme, performance data and suggested grade boundaries

Working

Q

Q	Working	Answer	Mark	Notes

18	$BDF = 70^{\circ}$	4	B1	may be marked on diagram
	<u>Alternate segment</u> theorem		B1	reason, the angle between a tangent and a chord is equal to the angle subtended in the <u>alternate</u> <u>segment</u>
	EFB = 180 - (70 + 40) = 70 opposite angles in a cyclic quadrilateral		B1	Angle <i>EFB</i> with reason, <u>opposite angles</u> in a <u>cyclic quad</u> rilateral sum to 180°
	CBF = EFB <u>alternate</u> angles therefore EF is parallel to ABC		B1	conclusion, <u>alternate</u> angles are equal
				Total 4 marks

Q	Working	Answer	Marl	x Notes
Q 19	Working $AB = 2\mathbf{b} - 2\mathbf{a} \text{ or } BA = 2\mathbf{a} - 2\mathbf{b}$ $AB = 2\mathbf{b} - 2\mathbf{a} \text{ or } BA = 2\mathbf{a} - 2\mathbf{b}$ $MN = 10\mathbf{a} - \mathbf{b} \text{ or } NM = -10\mathbf{a} + \mathbf{b}$ $eg \qquad MP = -\mathbf{b} + 2\mathbf{a} + k(2\mathbf{b} - 2\mathbf{a}) \text{ and } MP = 1 (10\mathbf{a} - \mathbf{u})$ $or eg \qquad MP = \mathbf{b} + k(2\mathbf{a} - 2\mathbf{b}) \text{ and } MP = 1 (10\mathbf{a} - \mathbf{u})$ $or eg \qquad MP = \mathbf{b} + k(2\mathbf{a} - 2\mathbf{b}) \text{ and } MP = 1 (10\mathbf{a} - \mathbf{u})$ $or eg \qquad AP = 8\mathbf{a} + k(2\mathbf{a} - 2\mathbf{b}) \text{ and } PN = 1 (2\mathbf{b} - \mathbf{u})$ $or eg \qquad AP = 8\mathbf{a} + k(\mathbf{b} - 10\mathbf{a}) \text{ and } AP = 1 (2\mathbf{b} - \mathbf{u})$ $or eg \qquad AP = -2\mathbf{a} + \mathbf{b} + k(10\mathbf{a} - \mathbf{b}) \text{ and } AP = 1 (2\mathbf{b} - \mathbf{u})$ $or eg \qquad AM = k(2\mathbf{b} - 2\mathbf{a}) + 1 (\mathbf{b} - 10\mathbf{a}) \text{ and } AM = 1 (2\mathbf{b} - \mathbf{u})$ $eg \qquad 2 - 2k = 10\lambda \text{ and } -1 + k = -\lambda \text{ (from } MP \text{ or eg } 2k = 10\lambda \text{ and } 1 - 2k = -\lambda \text{ (from } MP \text{ 2nd } \mathbf{u})$	(10a - b) (b) (-b) (2a) (b-2a) (a-2a+b) (1st)	5 1	xNotesM1for finding AB or BA or MN or NM M2for writing eg MP or PN or AP or AM in two different ways in terms of a and b (M1 for writing eg MP or PN or PN or AP or AM in one way)These may be written as eg PM in place of MP M1dep M3 for writing a pair of equations using their variables. MP (1st) leads to $\lambda = \frac{1}{9}, k = \frac{4}{9}$
		2nd)		$MP (1st) \text{ leads to } \lambda = \frac{1}{9}, k = \frac{4}{9}$ $MP (2nd) \text{ leads to } \lambda = \frac{1}{9}, k = \frac{5}{9}$ $MP (2nd) \text{ leads to } \lambda = \frac{8}{9}, k = \frac{4}{9}$ $N \text{ leads to } \lambda = \frac{8}{9}, k = \frac{4}{9}$ $MP (1st) \text{ leads to } \lambda = \frac{4}{9}, k = \frac{8}{9}$ $MP (2nd) \text{ leads to } \lambda = \frac{4}{9}, k = \frac{1}{9}$ $MP (2nd) \text{ leads to } \lambda = \frac{4}{9}, k = \frac{1}{9}$ $MP (2nd) \text{ leads to } \lambda = \frac{1}{9}, k = \frac{4}{9}$ $MP (2nd) \text{ leads to } \lambda = \frac{1}{9}, k = \frac{4}{9}$

L L					
20	$12^2 = 2^4 \times 3^2$ or $2 \times 12^2 = 2^5 \times 3^2$ or $\frac{2 \times 12^2}{3^2} (=$	$32) = 2^5$	5	M1	
	$18^{4n} = (2 \times 3^2)^{4n}$ or $2^{4n} \times 3^{2 \times 4n}$			M1	
	$3n^2 - 14n - 5 (= 0)$			A1	
	e.g. $(3n + 1)(n - 5)(= 0)$ $n = \frac{14 \pm \sqrt{(-14)^2 - (4 \times 3 \times -5)}}{2 \times 3}$			M1	for solving their 3 term quadratic equation using any correct method - if factorising, allow brackets which expanded give 2 out of 3 terms correct (if using formula or completing the square allow one sign error and some simplification – allow as far as e.g. $\frac{14 \pm \sqrt{196 + 60}}{6}$ oe)
		$-\frac{1}{3}, 5$		A1	Allow -0.33 or better for $-\frac{1}{3}$
					Total 5 marks

Answer

Mark

Notes

Practice Tests Set 15 – Paper 1H mark scheme, performance data and suggested grade boundaries

Working

Q

Practice Tests Set 15 – Paper 1H mark scheme	performance data and suggested grade boundaries
	\mathbf{J}

Q	Working	Answer	Mark	Notes

					Edexcel averages: scores of candidates who achieved grade:							
		Mean	Max	Mean								
Qn	Skill tested	score	score	%	ALL	9	8	7	6	5	4	3
1	Expressions and formulae	1.69	2	85	1.69	1.99	1.94	1.80	1.64	1.27	0.57	0.00
2	Linear equations	2.70	3	90	2.70	2.98	2.88	2.75	2.74	2.35	2.11	0.33
3	Powers and roots	1.67	2	84	1.67	1.96	1.79	1.73	1.49	1.38	1.03	0.33
4	Simultaneous linear equations	3.31	4	83	3.31	3.95	3.85	3.42	2.89	2.38	1.39	0.67
5	Inequalities	4.04	5	81	4.04	4.89	4.59	4.07	3.77	2.61	1.96	1.11
6	Algebraic manipulation	2.35	3	78	2.35	2.96	2.68	2.38	2.04	1.69	0.64	0.11
7	Statistical measures	3.89	5	78	3.89	4.75	4.43	3.95	3.68	2.68	1.53	0.22
8	Fractions	2.21	3	74	2.21	2.64	2.30	2.36	2.17	1.62	1.11	0.33
9	Degree of accuracy	1.31	2	66	1.31	1.89	1.55	1.32	0.79	0.58	0.18	0.00
10	Angles, lines and triangles	1.93	3	64	1.93	2.46	2.21	1.98	1.45	1.16	0.93	0.11
11	Graphs	3.78	6	63	3.78	4.78	3.87	3.57	3.17	2.95	2.25	1.11
12	Algebraic manipulation	2.47	4	62	2.47	3.78	3.17	2.15	1.40	0.55	0.25	0.11
13	Proportion	2.22	4	56	2.22	3.49	2.60	1.79	1.24	0.83	0.36	0.00
14	Construction	1.09	2	55	1.09	1.68	1.33	0.89	0.55	0.50	0.11	0.00
15	Quadratic equations	1.95	4	49	1.95	3.51	2.15	1.50	0.64	0.18	0.18	0.00
16	Function notation	4.31	8	54	4.31	7.42	5.18	1.40	1.17	0.32	0.44	0.00
17	Quadratic equations	2.49	6	42	2.49	5.11	2.61	1.08	0.53	0.14	0.11	0.00
18	Geometrical reasoning	0.97	4	24	0.97	1.97	1.02	0.48	0.09	0.13	0.07	0.00
19	Vectors	0.67	5	13	0.67	1.37	0.74	0.35	0.04	0.04	0.00	0.00
20	Powers and roots	1.37	5	27	1.37	3.28	1.02	0.31	0.06	0.06	0.00	0.00
	TOTAL	46.42	80	58	46.42	66.86	51.91	39.28	31.55	23.42	15.22	4.43

Suggested grade boundaries

Grade	9	8	7	6	5	4	3
Mark	60	46	36	28	19	10	2