Q	Working	Answer	Mark	Notes
1	20-5x (= 7-3x)		3	M1 for expansion of bracket
	E.g. $20 - 7 = -3x + 5x$ or			M1 ft from a 4-term equation
	-5x + 3x = 7 - 20			for a correct process of isolating
				terms in x on one side of the
				equation and numbers on the other
				side
		6.5 oe		A1 dep on M1 awarded and from
				correct working

2	x -2 -1 0 1 2 3	Correct line between	3	for a correct line between
	y 15 11 7 3 -1 -5	x = -2		x = -2 and x = 3
		and		
		x = 3		(B2 for a correct straight line segment through at
				least 3 of (-2, 15) (-1, 11) (0, 7) (1, 3) (2, -1)
	(-2, 15) (-1, 11) (0, 7) (1, 3) (2, -1) (3, -5)			(3, -5)
	(2, -1)(3, -5)			
				or
				for all of $(-2, 15)(-1, 11)(0, 7)(1, 3)(2, -1)$ (3,
				-5) plotted but not joined)
				(B1 for at least 2 correct points stated (may be in a
				table) or plotted or for a line drawn with a negative $\int \frac{1}{2} dx = \int \frac{1}{2} dx$
				gradient through $(0, 7)$ or for a line with a gradient
				of -4)
				Total 3 marks
	l			i utai 5 mai Ks

Q	Working	Answer		Mark	Notes
3 a		g^{10}	1	В	
b		k^7	1	В	
с		$9c^2d^8$	2	B	B1 for 2 out of 3 terms correct in a
					product

Q Wo		orking	Answer		Mark	Notes
E. 2 2 (- or 3: 6.	Climination .g. 1x-6y = 102 1x+35y = -21 -41y = 123) 5x-10y = 170 x+10y = -6 41x = 164)	Substitution E.g. $3\left(\frac{34+2y}{7}\right)+5y=-3$ or $3x+5\left(\frac{7x-34}{2}\right)=-3$ or $7\left(\frac{-3-5y}{3}\right)-2y=34$ or $7x-2\left(\frac{-3-3x}{5}\right)=34$		4	M1	for a correct method to eliminate <i>x</i> or <i>y</i> : coefficients of <i>x</i> or <i>y</i> the same and correct operation to eliminate selected variable (condone 1 arithmetical error) or for correctly writing <i>x</i> or <i>y</i> in terms of the other variable and correctly substituting
					A1	dep on M1 for $x = 4$ or $y = -3$
	$\frac{1}{x} - 2 \times -3 = 34$		x = 4 y = -3		M1 A1	dep on M1 for substitution of found variable or repeating the steps in first M1 for the second variable cao A correct answer without working scores no marks
						Total 4 marks
						i otal 7 mai Ko

Q	Working	Answer	Ν	lark	Notes
			1	-1	
5	4x > 2 - 7 oe			M1	accept as an equation or with wrong inequality sign.
		x > -1.25	2	A1	oe allow $(-1.25, (+)\infty)$
					Note: award M1A0 for an answer on the answer line of -1.25 with no sign or the incorrect sign eg $x = -1.25$, x < -1.25
					Total 2 marks
	1	[[) (1	6	
6			M1	eg L	y = 3x + c oe or $y = mx - 2$ oe or $3x - 2$ or $y = 3x - 2$ or $y = 3(x \pm a)$
		y = 3x - 2	2 A1	oe eg	y - 4 = 3(x - 2)
					y - 1 = 3(x - 1)
					y - a = 3(x - b) where (a, b) is any coordinate on the line
					Total 2 marks
	I				D1
7 (a)		2, 4, 6, 12		1	B1
(c)				2	$ \begin{array}{c} \text{M1} \\ \text{for } \frac{a}{14} \text{ with } a < 14 \text{ or} \\ 3 \end{array} $
					$\frac{3}{b}$ with $b > 3$ or
					for 3 and 14 used with incorrect notation e.g. 3 : 14
		$\frac{3}{14}$			A1 for $\frac{3}{14}$ or $0.214()$
					Total 3 marks

Q	Working	Answer	Mark	Notes
8 (a)		$\frac{2}{5}, \frac{3}{5}$ oe	2	B1 correct probabilities for spinner A
		$\frac{4}{5}, \frac{1}{5}, \frac{4}{5}, \frac{1}{5}$ oe		B1 correct probabilities for spinner B
(b)	$\frac{2}{5} \times \frac{4}{5} = \frac{8}{25} \text{ or } \frac{2}{5} \times \frac{1}{5} = \frac{2}{25} \text{ or } \frac{2}{5} \times \frac{1}{5} = \frac{2}{25} \text{ or } \frac{3}{5} \times \frac{4}{5} = \frac{12}{25} \text{ or } \frac{3}{5} \times \frac{1}{5} = \frac{3}{25} \text{ or } \frac{3}{25} = \frac{3}{25} = \frac{3}{25} \text{ or } \frac{3}{25} = \frac{3}{25} = \frac{3}{$		3	M1 ft from (a) provided 0 < probability <1
	$1 - \frac{8}{25}$ or $\frac{2}{25} + \frac{12}{25} + \frac{3}{25}$ or $\frac{2}{25} + \frac{3}{5}$ oe			M1 ft from (a) for a complete method
		$\frac{17}{25}$		A1 oe
				Total 5 marks
9			2	M1 for any correct partial factorisation with at least 2 factors, one of which must be a letter or the correct common factor with no more than 1 error inside the bracket
		$8m^2 g^3(2m+3g^2)$		A1

	Q	Working	Answe	er	Mark		Notes
10	a			$4e^{10}$	2	B2	(B1 for $4e^k$ or ke^{10})
	b	A correct first step eg $\frac{y^{-4}}{2^{-4}} \mathbf{or} \left(\frac{y^4}{16}\right)^{-1} \mathbf{or} \frac{y^{-4}}{0.0625} \mathbf{or} \left(\frac{2}{y}\right)^4 \mathbf{or} \frac{16}{y^4} \mathbf{or} \left(\frac{1}{\frac{y}{2}}\right)^4 \mathbf{or} \left(\frac{1}{y$	or $\frac{1}{\left(\frac{y}{2}\right)^4}$			M1	or for $16y^p$ where $p \neq -4$
				$16y^{-4}$	2	A1	
	с	$eg12 \times \frac{4x-2}{3} - 12 \times \frac{5-3x}{4} = 12 \times 6$ or				M1	for clear intention to multiply all terms by 12 or a multiple of 12
		eg 4(4x-2) - 3(5 - 3x) = 12 × 6 or eg $\frac{4(4x-2)}{12} - \frac{3(5-3x)}{12} (= 6)$ or					or to express LHS as two fractions over 12 or a multiple of 12 or as a single fraction with a denominator of 12 or a multiple of 12
		eg $\frac{4(4x-2)-3(5-3x)}{12}$ (= 6) oe					(if expanded numerator, allow one sign error)
		eg $16x - 8 - 15 + 9x = 6 \times 12$				M1	expanding brackets and multiplying both sides by denominator with no more than one sign error
		eg $16x + 9x = 72 + 8 + 15$				M1	for correct rearrangement of a correct equation with terms in <i>x</i> isolated
				3.8	4	A1	oe, award full marks for a correct answer if at least M1 scored
							Total 8 marks

QW	Vorking Answer	Mark	Notes
----	----------------	------	-------

11	xy + 3y = 5 - 2x oe			M1 multiplying both sides by $(x + 3)$ and expanding the brackets correctly
	e.g. $xy + 2x = 5 - 3y$			M1 ft dep on 2 terms on left and $(5 - 2x)$ on right, for collecting all x terms on one side and non-x terms on the other side
	eg x(y+2) = 5 - 3y			M1 ft, dep on 2 terms in x , for factorising for x
		$x = \frac{5 - 3y}{2 + y}$	4	A1 oe allow $\frac{5-3y}{2+y}$ as answer so long as previously seen $x = \frac{5-3y}{2+y}$
				Total 4 marks

Q	Working	Answer	Mark	Notes
12	E^{k}		3	M1 (NB. Not for M2 for
	$F = \frac{k}{v^2}$ or $Fv^2 = k$ oe			$F = \frac{1}{v^2})$ Constant of $6.5 = \frac{k}{4^2}$ oe
				proportionality
				must be a
				symbol such as k
	$6.5 = \frac{k}{4^2}$ or $k = 6.5 \times 4^2$ or $k = 104$			M1 For substitution of <i>F</i> and <i>v</i> into a correct formula
		$F = \frac{104}{v^2}$		A1 Award 3 marks if $F = \frac{k}{v^2}$ is on the
				answer line and the value of k
				= 104 is found
				Total 3 marks
r				
	.g. $x = 0.6\dot{8}\dot{1}$ and $100x = 68.\dot{1}\dot{8}$ r $10x = 6.\dot{8}\dot{1}$ and $1000x = 681.\dot{8}\dot{1}$		M1	e.g. two decimals that when subtracted give a finite decimal (must show understanding of recurring figures by 'dot' or at least 2

13	e.g. $x = 0.6\dot{8}\dot{1}$ and $100x = 68.\dot{1}\dot{8}$ or $10x = 6.\dot{8}\dot{1}$ and $1000x = 681.\dot{8}\dot{1}$			M1	e.g. two decimals that when subtracted give a finite decimal (must show understanding of recurring figures by 'dot' or at least 2 lots of 18 or 81 after the decimal point). Algebra required, use of any letter.
	$99x = 67.5, x = \frac{67.5}{99} = \frac{15}{22}$ or $990x = 675, x = \frac{675}{990} = \frac{15}{22}$ oe	show	2	A1	dep for completing the 'show that' arriving at given answer from correct working.
					Total 2 marks

	Q	Working	Answer	Mark	Notes
14	(a)(i)		122	1	B1
	(a)(ii)		reason	1	B1 (dep on a correct answer or a correct method seen for (i)) <u>Opposite angles</u> in a <u>cyclic</u> <u>quad</u> rilateral sum to 180°
	(b)	$360 - 2 \times 58 \text{ or } 2 \times 122$		2	M1 ft from (a)
			244		A1
					Total 4 marks

15	$\begin{vmatrix} \frac{6}{3-\sqrt{7}} \times \frac{3+\sqrt{7}}{3+\sqrt{7}} \text{ or} \\ \frac{6}{3-\sqrt{7}} \times \frac{-3-\sqrt{7}}{-3-\sqrt{7}} \end{vmatrix}$			M1	
	$\frac{\frac{6(3+\sqrt{7})}{3^2-7} \text{ or } \frac{6(3+\sqrt{7})}{2} \text{ or }}{\frac{6(-3-\sqrt{7})}{-3^2+7} \text{ or } \frac{6(-3-\sqrt{7})}{-2}}$			M1	(numerator may be expanded or denominator may be 4 terms which need to be all correct)
		$9 + 3\sqrt{7}$	3	A1	dep on M2 for $9+3\sqrt{7}$ or $3(3+\sqrt{7})$ from correct working
					Total 3 marks

Q		Work	Answer	Mark		Notes	
16	3y(2y +	1) $-y^2 = 8$ or	$(x-1)(x-1)^{2}$	Q		M1	correct first step eg substitution by
	$x = \frac{8+3}{3}$	$\frac{1}{y^{2}} - y^{2} = 8 \text{ or}$ $\frac{y^{2}}{y} \rightarrow \frac{8 + y^{2}}{3y} - 2y = 1 \text{ or}$	$3x\left(\frac{-2}{2}\right)^{-}\left(\frac{-2}{2}\right) =$	0			eg $x = 1 + 2y$ or $y = \frac{x-1}{2}$ to get an
	5		00				equation in a single variable
	3xy -	$v^2 = 8$					or
		$y \times 2y = 3y \times 1$					writing 2^{nd} equation with x the
	-	$y \times 2y = 3y \times 1$					subject and substituting into 1 st
	oe						or
							multiplying 2^{nd} equation by $3y$ and
							subtracting from 1 st oe
	eg 5 y^2 +	-3y - 8 (= 0)	eg $5x^2 - 4x - 33 (= 0)$			A1	for a correct simplified quadratic
	(5y+8)	(y-1) (= 0) or	(5x+11)(x-3) (= 0)	r		M1ft	dep on M1 for solving their 3 term
		$e^2 - 4 \times 5 \times (-8)$	$4\pm\sqrt{\left(-4\right)^2-4\times5\times\left(-3\right)^2}$	3)			quadratic equation using any correct
			$\frac{1}{2}\sqrt{(1)} \frac{1}{1}\sqrt{2}$	<u> </u>			method (allow one sign error and
		2×5	2×3				some simplification – allow as far
							$-3 \pm \sqrt{9 \pm 160}$
							as $\frac{-3 \pm \sqrt{9 + 160}}{10}$) or if factorising,
							allow brackets which expanded give
							2 out of 3 terms correct)
	$y = -\frac{8}{5}$	and $y = 1$ (both)	$x = -\frac{11}{5}$ and $x = 3$ (bo	oth)		A1	dep on first M1
			-		8 5	A1	oe dep on first M1
				$x = -\frac{11}{5}, y = -\frac{11}{5}$	$-\frac{3}{5}$		Must be paired correctly
				x = 3, y = 1			
							Total 5 marks

Q		Working			Answer Ma			Notes		
17	$3^4 = \frac{3^x}{9^{3x}}$ o	r 81 = $\frac{3^x}{(3^2)^{3x}}$	$9^2 = \frac{3^x}{9^{3x}}$ or $81 = \frac{9^2}{9^{3x}}$	-			M1	replacing 81 with 3^4 or 9^{3x} with $(3^2)^{3x}$ (or 3^{6x}) or replacing 81 with 9^2 or 3^x with $(9^{0.5})^x$ (in an equation)		
	eg 4 + 6x =	x or 4 = x - 2(3x) oe	eg $2 = 0.5x - 3x$ oe	;			M1	a correct equation using powers		
					-0.8	3	A1	oe, dep on at least M1		
								Total 3 mar		
18	$\overrightarrow{AB} = -\mathbf{a} + \overrightarrow{DC} = \frac{1}{3}(-3)$ $\overrightarrow{DC} = \frac{1}{3}(-3)$	b or $\overrightarrow{BA} = \mathbf{a} - \mathbf{b}$ $\mathbf{a} + \mathbf{b}$) or $\mathbf{a} - \mathbf{b}$)oe						M1Correct diagram (condone missing vector labels or arrows – with C on line segment OA and D on line segment OB) OR for finding \overrightarrow{AB} or \overrightarrow{BA} - may be seen as part of later workingM1Method to find \overrightarrow{CD} or \overrightarrow{DC}		
				ectors and conclusion parallel and <u>trapezium</u>			3	A1 eg $\overrightarrow{AB}(AB)$ and $\overrightarrow{CD}(CD)$ are paralle therefore $ABDC$ is a trapezium		
								Total 3 mar		

Q	Working	Answer	Mark		Notes
19	$(3x+2)(2x-4) < 3x+27$ oe eg $6x^2 - 8x - 8 < 3x + 27$			M1	condone incorrect symbol
	eg $6x^2 - 11x - 35 < 0$			M1	expanding and rearranging to get a
					correct 3 term quadratic, condone
					incorrect symbol
	$11\pm\sqrt{(-11)^2-4\times6\times(-35)}$			M1	first step to find the critical values dep
	$(2x-7)(3x+5) (= 0)$ or $\frac{11\pm\sqrt{(-11)^2-4\times6\times(-35)}}{2\times6}$				on M1 for solving their 3 term quadratic
	240				using any correct method (allow one
					sign error and some simplification –
					allow as far as the equivalent of
					$\frac{11\pm\sqrt{121+840}}{12}$) or if factorising, allow
					12) of a factorising, and t
					brackets which expanded give 2 out of 3
					terms correct)
	$-\frac{5}{2}$ $\frac{7}{2}$			A1	oe the positive critical value only or
	$-\overline{3}, \overline{2}$				both critical values (if both they must be
					correct)
		$2 < x < \frac{7}{2}$	5	A1	accept $2 \le x < \frac{7}{2}$ may be seen as two
					separate inequalities $x > 2$ ($x \le 2$) and x
					< 7_
					$< \frac{1}{2}$
					Total 5 marks

Q	Working	Answer	Mark	Notes			
$\begin{array}{ c c c } 20 & (\frac{9x}{3x^2} - \frac{3x^2}{3x^2} - \frac{3x^2}{3x^2}$	$\frac{x^2 - 4}{13x - 10} = \frac{(3x + 2)(3x - 2)}{(3x + 2)(x - 5)}$		M1	for either (3x+2)(3x-2) or (3x+2)(x-5)	M2 for $\frac{9x^2 - 4}{(0, 2)^2 - 4} =$		
$\left(\frac{9x}{3x^2}\right)$	$\frac{x^2 - 4}{13x - 10} = \frac{(3x + 2)(3x - 2)}{(3x + 2)(x - 5)}$		M1	for (3x+2)(3x-2) and	(9x - 4)(x - 5) $\frac{1}{(x - 5)}$		
(3x-2) (3x-2) (3x-2) (3x+2) (3x+2) (3x-2)	denominators) $(3x^2 - 13x - 10)(x - 1)$ or) $(3x + 2)(x - 5)(x - 1)$ or $4x^3 + 41x^2 + 24x - 20$ or) $(x - 5)(x - 1)$ or $3x^3 - 16x^2 + 3x + 10$ or) $(x - 5)(x - 1)$ or $3x^3 - 20x^2 + 27x - 10$ or (x - 1) or $x^2 - 6x + 5$		M1	(3x+2)(x-5) (indep) ft their fract correct common der fractions with algeb NB: fractions need n	nominator for 2 praic denominators		
$\frac{x-1-}{(x-5)}$	$\frac{7(x-5)}{9(x-1)} \text{ or } \frac{x-1-7x+35}{(x-5)(x-1)} \text{ or } \frac{x-1-7x+35}{(x-5)(x-1)} \text{ or } \frac{x-1-7x+35}{x^2-6x+5} \text{ oe } $		M1	for a correct fraction quadratic denomin not be expanded wh correct answer	ator – may or may		
		$\frac{2(17-3x)}{(x-5)(x-1)}$	5 A1	accept $\frac{34-6x}{(x-5)(x-1)}$ is expanded then it i			

Q	Working	Answer			Mark	Notes	
21 a	$5 - (x \pm q)^2 + 9$ oe or $p - (x - 3)^2$				M1	may be se	een in working eg –[$(x-3)^2 - 9 - 5$]
	oe						
						or	
	or						
	$p-q^2+2qx-x^2$ and one of						g $p - (x - q)^2$ correctly and equating one of
	$2q = 6$ or $p - q^2 = 5$					the coeffi	cient of x or the constant term
		14 - (x - x)	$(-3)^2$	2	A1	fully corr	ect
						SCB1 for	$(x-3)^2 - 14$
b	e.g. $(x-3)^2 = 14 - y$				M1		eps to isolate their bracket
						ft from (a	a) dep on expression in form $\pm p \pm (x-q)^2$
	$[or (y-3)^2 = 14 - x]$						
	$x = 3 \pm \sqrt{14 - y}$				M1	-	method to find y in terms of x or x in terms
	$[or y = 3 \pm \sqrt{14 - x}]$						done + for \pm
	$[or y = 3 \pm \sqrt{14} - x]$					· · · · · · · · · · · · · · · · · · ·) dep on expression in form $\pm p \pm (x-q)^2$
	$(f^{-1}(x) =) 3 - \sqrt{14 - x}$				M1	for the co	rrect inverse
					M1	method to	b solve $0 < 3 - \sqrt{14 - x}$ or a lower bound of
						5 clearly	shown, eg $x > 5$ as part of the answer
		$5 < x \leq$	<u>≤</u> 14	5	A1	cao	
							Total 7 marks

		Mean	Max	Mean	Edexce	l average	es: score	s of cano	lidates w	/ho achiev	ved grade:	
Qn	Skill tested	score	score	%	ALL	9	8	7	6	5	4	3
1	Linear equations	12.65	3	88	2.65	2.99	2.93	2.88	2.74	2.58	2.29	1.63
2	Graphs	2.42	3	81	2.42	2.94	2.85	2.76	2.60	2.34	1.76	0.70
3	Use of symbols	3.26	4	82	3.26	3.94	3.83	3.63	3.26	2.96	2.41	1.84
4	Simultaneous linear equations	2.89	4	72	2.89	3.94	3.76	3.40	3.06	2.27	1.35	0.49
5	Inequalities	1.53	2	77	1.53	1.92	1.83	1.70	1.58	1.42	1.05	0.66
6	Graphs	1.19	2	60	1.19	1.92	1.82	1.55	1.06	0.52	0.24	0.05
7	Set language and notation	2.04	3	68	2.04	2.65	2.44	2.28	2.01	1.69	1.40	1.01
8	Probability	3.17	5	63	3.17	4.69	4.25	3.64	3.02	2.15	1.47	0.78
9	Algebraic manipulation	1.16	2	58	1.16	1.76	1.56	1.31	1.09	0.81	0.48	0.12
10	Linear equations	4.59	8	57	4.59	7.43	6.34	5.12	3.62	2.92	1.67	0.77
11	Expressions and formulae	2.09	4	52	2.09	3.76	3.25	2.41	1.40	0.88	0.25	0.12
12	Ratio and proportion	1.56	3	52	1.56	2.79	2.31	1.78	1.22	0.67	0.29	0.00
13	Decimals	0.80	2	40	0.80	1.52	1.23	0.85	0.52	0.27	0.12	0.02
14	Circle properties	1.55	4	39	1.55	2.87	2.19	1.68	1.10	0.67	0.38	0.23
15	Powers and roots	1.19	3	40	1.19	2.65	1.89	1.11	0.49	0.28	0.11	0.02
16	Quadratic equations	1.73	5	35	1.73	4.16	2.43	1.42	0.74	0.32	0.11	0.06
17	Powers and roots	1.03	3	34	1.03	2.55	1.48	0.82	0.31	0.18	0.04	0.01
18	Vectors	0.94	3	31	0.94	2.21	1.34	0.77	0.47	0.20	0.08	0.06
19	Inequalities	1.37	5	27	1.37	3.11	1.93	1.12	0.81	0.35	0.13	0.03
20	Algebraic manipulation	1.41	5	28	1.41	3.54	2.09	1.02	0.47	0.24	0.10	0.01
21	Function notation	0.81	7	12	0.81	2.57	0.91	0.35	0.14	0.04	0.01	0.00
	TOTAL	49.38	80	62	39.38	74.91	60.66	48.60	37.71	28.76	19.74	11.61

Mark

Answer

Notes

Practice Tests Set 14 – Paper 1H mark scheme, performance data and suggested grade boundaries

Working

Suggested grade boundaries

Q

Grade	9	8	7	6	5	4	3
Mark	68	55	43	33	25	16	9