Question	Working	Answer		Mark	Notes
1 (a)		w^{12}	1	B1	
(b)		t^6	1	B1	

Question	Working	Answer	Mark	Notes
2	e.g. $4x - 8x = 17 + 13$ oe		2	M1 For collecting terms in <i>x</i> and number terms on either side of a correct equation
		-7.5		A1 oe e.g. $-\frac{30}{4}$
				Total 2 marks

Question	Working	Answer	Mark		Notes
3	$\frac{\frac{17}{3(-)11}}{4} \text{ or } \frac{5\frac{8}{12(-)2}9}{12}$		3	M1	Sight of $\frac{17}{3}$ and $\frac{11}{4}$ or $5\frac{8}{12}$ and $2\frac{9}{12}$
	$\frac{68}{12} - \frac{33}{12}$ or $4\frac{20}{12} - 2\frac{9}{12}$			M1	$\frac{68n}{\text{or}} - \frac{33n}{12n}$
	$\frac{35}{12} = \frac{11}{12}$			A1	Dep on M2
	Alt:			M1	Sop on M2
	$3 (+) \left(\frac{2}{3} - \frac{3}{4}\right)$			M1 A1	
	$3 (+) \left(\frac{8}{12} - \frac{9}{12} \right)$ $3 - \frac{1}{12} = 2 \frac{11}{12}$			<u>A1</u>	Dep on M2
				M1	
	Alt: $4\frac{5}{3}(-)2\frac{3}{4}$			M1	
	$2 (+) \left(\frac{5}{3} - \frac{3}{4}\right)$ $2 (+) \left(\frac{20}{3} - \frac{9}{3}\right)$			A1	Dep on M2
	$2 (+) \left(\frac{20}{12} - \frac{9}{12} \right)$ $= 2 \frac{11}{12}$				
					Total 3 marks

Que	estion	Working	Answer	Mark		Notes
4		$x^{9}y^{6}$	$x^{9}y^{6}$	2	B1B1	Allow B1 if $(x^3y^2)^3$ or $(x^{36}y^{24})^{0.25}$ seen
			-			on answer line
						Total 2 marks

	Question	Working	Answer	Mark	Notes
4	(i)		12, 18	1	B1
	(ii)		12, 14, 15, 16, 18, 20	1	B1
					Total 2 marks

Que	estion	Working	Answer	Mark		Notes
6	(a)		-5, 5, 5, -5	2	B2	All 4 correct values
						If not B2 then B1 for 2 or 3 correct values
	(b)			2	M1	Plotting at least 6 points correctly from their table
						dep on B1 in part(a)
			Fully correct curve		A1	Do not accept horizontal line at top of curve or
						straight line segments
						Total 4 marks

Question	Working	Answer	N	Iark	Notes
7		$125x^3y^6$	2	B2	
					· ·
				(B1)	for 2 correct terms as part of a product
					Total 4 marks

Question	Working	Answer	Mark		Notes
8 (a)	$(x+2)(2x+3) = 2x^2 + 3x + 4x + 6$		3	M1	For multiplying a pair of brackets
	$(2x+3)(x-7) = 2x^2 - 14x + 3x - 21$				and getting 3 out of 4 terms correct.
	$(x+2)(x-7) = x^2 - 7x + 2x - 14$				
	$(2x^2+7x+6)(x-7) = 2x^3-14x^2+7x^2-49x+6x-42$			M1dep	For multiplying the product of the
	$(2x^2-11x-21)(x+2) = 2x^3+4x^2-11x^2-22x-21x-42$				first 2 brackets (ft from the 1st
	$(x^2-5x-14)(2x+3) = 2x^3+3x^2-10x^2-15x-28x-42$				stage) by the 3rd bracket, and
					getting at least 3 out of 6
					or 4 out of 8 terms correct
		$2x^3 - 7x^2 - 43x$		A1	Fully correct. isw extra work as
		- 42			long as correct
					e.g. $x(2x2 - 7x - 43) - 42$
	Alternative (all in one method)				
	(x+2)(2x+3)(x-7) =			M2	For at least 6 out of 8 correct terms
	$2x^3 - 14x^2 + 3x^2 - 21x + 4x^2 - 28x + 6x - 42$				
				(M1)	for 4 or 5 out of 8 correct terms
		$2x^3 - 7x^2 - 43x$		A1	Total 3 marks
		- 42			

Qu	estion	Working	Answer	Mark		Notes
9		Gradient = $(-)4 \div 2$ oe		3	M1	Correct method to work out the gradient
						(±)
						accept $4 \div 2$ oe or " m " = 2
			y = -2x - 1 oe		A2	
						If not A2 then A1 for $L = -2x - 1$
						or $-2x-1$
						or $y = 2x - 1$ or $y = -2x + c$
						Total 3 marks

Que	estion	Working	Answer	Mark		Notes
10	(a)	Plotting points from table at ends of interval		2	M1	$\pm^{1/2}$ sq (at least 5 points plotted
		(40, 6), (50, 20), (60, 56), (70, 84), (80, 95),				correctly) Or <u>all</u> points plotted
		(90, 100)				consistently within each interval at
						the correct heights
		Points joined with curve or line segments	Correct cf diagram		A 1	Accept of graph which is not joined
						to (30,0)
	(b)	Use of graph at 50		2	M1	Use of graph at 50 walkers
			58 - 59		A 1	No working shown and answer is
						within 58 – 59 award M1A1
	(c)	86 or 87 or 88 indicated on graph or stated		3	M1	Use of their graph at 72 minutes
		100 – "86" or 100 – "87" or 100 – "88"			M1	Dep e.g. 12, 13 or 14 walkers
			12 13 14		A1	$0.12 \rightarrow 0.14$ inc, oe
			100 oe 100 oe 100			
						Total 7 marks

Question	Working	Answer	Mark		Notes
11 (a)	e.g. one correct value on the vertical scale e.g. 1 a high or 1 cm ² = 5 passengers or 5 small squares = 1 passenger or (FD =) 24 ÷ 20 (= 1.2)	at 1 cm	3	M1	For a correct scale on the vertical axis or a 1 cm \times 1 cm square = 5 passengers or other correct scale or one correct product or frequency (other than the 24) or (FD =) $24 \div 20$ (= 1.2)
	$ \begin{array}{l} 10 \times 0.4 & (= 4) \\ 10 \times 1.8 & (= 18) \\ 5 \times 6.4 & (= 32) \\ 15 \times 2 & (= 30) \\ 20 \times 0.8 & (= 16) \end{array} $			M1	At least 3 correct products or frequencies (other than the 24) stated (could be seen on diagram)
		124		A1	
(b)	e.g. $0.25 \times 24 + 20 \times 0.8 = 22$ or "1.2" × 5 + 20 × 0.8 (= 22)		2	M1	ft from (a)
		"22" "124"		Alft	oe (0.17(741))
					Total 5 marks

Question	Working	Answer	Mark	Notes
12	$2x^2 + 3(2x+1)^2 = 5$		5	M1 $2\left(\frac{y-1}{2}\right)^2 + 3y^2 = 5$
	eg $14x^2 + 12x - 2 = 0$ or if completing the square, allow $14x^2 + 12x = 2$ oe			A1 $7y^2 - 2y - 9 = 0$ or if completing the square, allow $7y^2 - 2y = 9$ oe
	eg $(7x - 1)(x + 1)$ or $(7x - 1)(2x + 2)$ $\frac{-12 \pm \sqrt{12^2 - 4 \times 14 \times -2}}{2 \times 14}$ oe			M1 ft as long as M1 awarded and 3 term quadratic eg $(7y - 9)(y + 1)$ $2 \pm \sqrt{(-2)^2 - 4 \times 7 \times -9}$ eg 2×7 oe
	$7\left(\left(x+\frac{3}{7}\right)^2 - \frac{9}{49}\right) = 2$ oe			$ \begin{array}{ccc} & 2 \times 7 & \text{oe} \\ 7 \left(\left(y - \frac{1}{7} \right)^2 - \frac{1}{49} \right) = 9 & \text{oe} \end{array} $
	$x = \frac{1}{7}, x = -1 $ (need both)			A1 $y = \frac{9}{7}, y = -1 $ (need both)
		$x = \frac{1}{7}$, $y = \frac{9}{7}$		A1 Dep on M1 Must be paired correctly Must be 3 sf or better (0.142857) (1.28571)
		x = -1, y = -1		
				Total 5 marks

Question	Working	Answer	Mark	Notes
13	e.g. $p^2(2m-y) = x+m$		3	M1 Multiplying by denominator and expanding bracket
	$2p^2m - p^2y = x + m$			M1 Collect terms in m and factorise in a correct equation
	$2p^{2}m - m = x + p^{2}y$ $m(2p^{2} - 1) = x + p^{2}y$	$m = \frac{x + p^2 y}{2p^2 - 1}$		A1 oe eg $m = \frac{-x - p^2 y}{\text{must have m}^1 = 2p^2}$
				Total 3 marks

Question	Working	Answer	Mark		Notes
14	(Gradient of L_1 =) $6 \div 2$ (=3)		4	M1	could be seen as part of an
					equation. Ignore constant term if
					candidate rearranges L ₁
	$m \times "3" \models -1 \text{ or }$			M1	for use of $m_1m_2 = -1$
	$m=-{"3"}$				could be seen as part of an equation
	$-1 = "-\frac{1}{3}" \times 9 + c$ or $y1 = "-\frac{1}{3}"(x - 9)$ or $c = 2$	2		M1	
		$y + \frac{1}{3}x = 2$		A1	oe in required form eg $3y + x = 6$, 6y + 2x = 12 etc
					Total 4 marks

Question	Working	Answer	Mark	Notes
15 (i)		(9, 3)	1	B1
(ii)		(4, 9)	1	B1

Que	stion	Working	Answer	Mark		Notes
16	(a)		3 4 oe	1	B1	
	(b)	$\frac{x-5}{4(x-5)-3}$		2	M1	
		4(:-3)-3	$\frac{x-5}{4x-23}$		A1	cao
	(c)	$y = \frac{x}{4x - 3}$ or $x = \frac{y}{4y - 3}$		3		
		y(4x-3) = x or $x(4y-3) = y4xy - 3y = x$ or $4xy - 3x = y4xy - x = 3y$ or $4xy - y = 3x$			M1	Moving the denominator to the other side of the equation
		x(4y-1) = 3y or $y(4x-1) = 3x$			M1	Factorising the variable on one side in a correct expression
			$\frac{3x}{4x-1}$ oe		A1	a correct expression
	(d)	Tangent drawn at $x = -0.5$ (G =) $18 \div 3$ oe		3	M1 M1	Drawing a tangent at $x = -0.5$ Correct method to work out the gradient of the tangent at $x = -0.5$ or $x = -0.5$
			$5 \rightarrow 7$		A1	= +0.5 Dep on 1 st M1
						SC B1 B1 for drawing a tangent at x =+0.5 and gradient = $-3 \rightarrow -4$
						Total 9 marks

Que	estion	Working	Answer	Mark		Notes
17		$3^n - \frac{3^n}{2^n}$		2	M1	for a correct first step e.g. 3^{2y} or 3^{-2y}
		$3 - \frac{3}{3^{2y}}$	n = x - 2y		A1	
						Total 2 marks

18	x-4 $x-5$		_		
	$\overline{x} \times \overline{x-1} = 0.7$ $3x2 - 83x + 200 (= 0) \text{ oe}$ $83 \pm \sqrt{83^2 - (4 \times 3 \times 200)}$ $2 \times 3 \qquad \text{or } (3x - 8)(x - 25) (=0)$ $\text{or } (x - 83/6)2 + 200/3 - 832/36 (=0)$		5	A1 $\frac{z-5}{z-1}$ M1 Rearran the form 1st step	12 then M1 for either $\frac{x-4}{x}$ or gement of their quadratic to a $ax^2 + bx + c = 0$ in solving the correct 3 term
		25		A1 quadrati	ic
				M2 Accept algebra)	25 only (dep on M3 if using
	Alt: y = yellow marbles $\frac{y}{y+4} \times \frac{y-1}{y+3} = 0.7$			A1 $\frac{\text{If not M}}{\frac{y-1}{y+3}}$ M1	12 then M1 for either $y+4$ or
	$3y2 - 59y - 84 (= 0) \text{ oe}$ $\frac{59 \pm \sqrt{59^2 - (4 \times 3 \times - 84)}}{2 \times 3} \text{ or } (3y + 4)(y - 21)$ or $(y - 59/6)2 - 84/3 - 592/36 (= 0)$			Rearran the form	gement of their quadratic to a $ay^2 + by + c = 0$ in solving the correct 3 term ic
	y = 21 21+4	25		Accept algebra) Give ful and 1st NB: SC solving	25 only (dep on M3 if using) 21 20 Il marks if $\frac{25}{25} \times \frac{20}{24} = 0.7$ seen M2 scored B1 for completing 1st step in incorrect 3 term quadratic 5 marks

Que	estion	Working	Answer	Mark		Notes
19		$-2(x^2-6x)+5$ or $-2[(x)]^2-6x-2.5$)		4	M1	Factorising by extracting -2 in a correct expression
		$-2[(x-3)^2-9-2.5]$ Or $-2[(x-3)^2-9]+5$			M1	Correct expression equivalent to $5 + 12x - 2x^2$
		$[-2[(x-3)]^2-11.5]$ or $-2(x-3)^2+18+5$			M1	Correct expression equivalent to $5 + 12x - 2x^2$
			23 - 2(x - 3) ²		A1	Award full marks if a, b, and c are correctly stated and $23-2(x-3)^2$ is not stated anywhere. SC B3 for $23-2(3-x)^2$ SC B2 for $-2(x-3)^2$ + constant or $-23-2(x+constant)^2$ SC B1 for $-2(x+3)^2$ +constant
		Alt: $a + b(x^2 + 2cx + c^2)$ $2bc = 12 \text{ or } a + bc^2 = 5 \text{ or } b = -2$ $2 \times -2 \times c = 12 \text{ or } c = -3$ $a + -2 \times (-3)^2 = 5 \text{ or } a = 23 \text{ seen}$			M1 M1 M1 M1	Multiplying out expression correctly Equating coefficients or stating value of b Method to calculate c
			23 - 2(x - 3) ²			Method to calculate a
						SC B3 for 23 - 2(3 - x) ²
						Total 4 marks

Question	Working	Answer	Mark	Notes
20		a = -2, b = 3	2	B2 or $a = 2, b = -3$
				·
				(B1) for $a = -2$ or $a = 2$ or $b = 3$ or $b = -3$
				Total 4 marks

Question	Working	Answer	Mark		Notes
21	1(+1)		4		Algebraic representation of one of the
	$(\operatorname{Term} n =) \ \overline{2}^{n(n+1)} \text{ or }$			M1	two consecutive terms in sequence
	(Term $n + 1 =$) $\frac{1}{2(n+1)(n+2)}$ $\frac{1}{2}n(n+1) + \frac{1}{2}(n+1)(n+2)$ $\frac{1}{2}(n+1)(n+n+2) = \frac{1}{2}(n+1)(2n+2)$ or			M1	Adding two consecutive terms Factorisation or multiplying out
	$\frac{1}{2}n^2 + \frac{1}{2}n + \frac{1}{2}n^2 + \frac{1}{2}n + n + 1 \rightarrow n^2 + 2n + 1$	(n+1)2 shown		M1 A1	correctly to get to $n^2 + 2n + 1$ Dep on M3
	$2^{n} \cdot 2^{n} \cdot 2^{n} \cdot 2^{n} \rightarrow \underline{n^{2} + 2n + 1}$				1
					Total 4 marks

Question	Working	Answer	Mark	Notes
22	$\overrightarrow{AP} = \frac{3}{4} \times 2\mathbf{c} \ (=\frac{3}{2}\mathbf{c}) \text{ oe}$		5	M1 For $\overrightarrow{AP} = \frac{3}{2} \mathbf{c}$ oe, eg could be part of
				$\overrightarrow{OP} = \mathbf{a} + \frac{3}{2}\mathbf{c}$ oe or on diagram
	$\overrightarrow{AC} = \mathbf{c} - \mathbf{a}$ oe or $\overrightarrow{CA} = \mathbf{a} - \mathbf{c}$ oe			M1
	$\overrightarrow{OQ} = \mathbf{c} + n(\mathbf{a} - \mathbf{c}) \text{ or } \overrightarrow{OQ} = \mathbf{a} + n(\mathbf{c} - \mathbf{a})$			M1
	or $\overrightarrow{QP} = n(\mathbf{a} - \mathbf{c}) + \frac{3}{2}\mathbf{c}$			
	$\frac{n}{1-n} = \frac{2}{3} \Rightarrow n = \frac{2}{5} \text{oe or}$			M1
	$\frac{1-n}{n} = \frac{2}{3} \Rightarrow n = \frac{3}{5} \text{oe or}$			
	$\frac{n}{\frac{3}{2} - n} = \frac{2}{3} \implies n = \frac{3}{5} \text{ oe}$			
		3:2		A1 oe, dep on M3
				Total 5 marks

Performance data for Practice Test 1H (Set 11)

Edexcel averages: scores of candidates who achieved grade:

New	Mean	Max	Mean	Euexcei av	verages. S	cores or ca	anuluales	wilo acilie	veu graue	•	
Qn	score	score	%	ALL	9	8	7	6	5	4	3
	1 0.97		97	0.97	1.00	0.99	0.98	0.98	0.96	0.94	0.83
	0.96		96	0.96	1.00	0.99	0.99	0.97	0.97	0.92	0.83
	2 1.79		90	1.79	1.94	1.90	1.88	1.82	1.74	1.41	1.20
	3 2.68		89	2.68	2.95	2.90	2.84	2.78	2.46	1.99	1.49
	4 1.74		87	1.74	1.98	1.94	1.80	1.66	1.50	1.29	0.99
	5 0.81		81	0.81	0.96	0.90	0.85	0.76	0.67	0.54	0.36
	0.73		73	0.73	0.95	0.87	0.78	0.66	0.52	0.32	0.20
	6 1.85		93	1.85	1.99	1.94	1.89	1.82	1.74	1.66	1.48
	1.59		80	1.59	1.86	1.73	1.62	1.48	1.37	1.22	1.03
	7 1.57		79	1.57	1.97	1.86	1.68	1.46	1.11	0.84	0.66
	8 2.29		76	2.29	2.89	2.70	2.44	2.13	1.73	1.16	0.62
	9 2.08		69	2.08	2.92	2.70	2.29	1.72	1.04	0.41	0.17
	0 1.65		83	1.65	1.90	1.82	1.75	1.60	1.36	1.14	1.03
	1.34		67	1.34	1.84	1.68	1.42	1.16	0.75	0.45	0.19
	1.91	3	64	1.91	2.67	2.37	2.04	1.63	1.06	0.60	0.20
1			64	1.93	2.77	2.48	2.05	1.52	1.01	0.51	0.36
	1.12		56	1.12	1.73	1.47	1.17	0.83	0.47	0.23	0.07
1	2 2.83		57	2.83	4.66	3.91	2.78	1.70	1.02	0.43	0.29
1	3 1.54		51	1.54	2.82	2.22	1.37	0.71	0.37	0.13	0.05
1	4 1.80	4	45	1.80	3.57	2.69	1.38	0.64	0.25	0.07	0.01
1	5 0.45	1	45	0.45	0.87	0.65	0.38	0.20	0.08	0.03	0.02
	0.43	1	43	0.43	0.84	0.59	0.34	0.19	0.09	0.03	0.04
1	6 0.45	1	45	0.45	0.76	0.68	0.44	0.22	0.12	0.03	0.01
	1.33	2	67	1.33	1.91	1.75	1.46	1.03	0.66	0.24	0.19
	1.54	3	51	1.54	2.83	2.25	1.39	0.70	0.26	0.05	0.02
	0.98	3	33	0.98	2.17	1.30	0.67	0.32	0.13	0.03	0.00
1	7 0.74	2	37	0.74	1.68	1.01	0.45	0.19	0.07	0.02	0.01
1	8 1.68	5	34	1.68	4.44	2.21	0.63	0.19	0.03	0.00	0.00
1	9 1.31	4	33	1.31	3.33	1.69	0.59	0.22	0.07	0.03	0.01
2	0 0.57	2	28	0.57	1.19	0.69	0.39	0.27	0.14	0.11	0.05

	44.70	80	59	44.70	69.19	55.36	41.98	32.22	24.03	16.94	12.44
22	1.06	5	21	1.06	2.06	1.40	0.92	0.50	0.23	0.07	0.03
21	0.98	4	25	0.98	2.74	1.08	0.32	0.16	0.05	0.04	0.00

Suggested grade boundaries

1MA1 Practice Tests (Set 10)			9	8	7	6	5	4	3	2	1
1H	Higher tier	Paper 1H	62	49	37	28	21	14			
2H/3H	Higher tier	Paper 2H/3H	64	52	41	31	22	15			
Total	Higher tier		135	109	85	65	48	33			

(Marks for papers 1H, 2H/3H are each out of 80.)