Paper 1MA	1: 2H					
Question	Working	Answer			Notes	
1		96	P1	a strategy to start to	solve the problem eg 18	÷ (7 – 4) (=6)
			P1	for completing the p	process of solution eg "6"	\times (4 + 5 + 7)
			A1	cao		
2		20.9	M1	correct recall of app	propriate formula eg sin x	$=\frac{5}{14}$
			A1	for 20.9(248)		
3 (a)		4 <i>n</i> +2	M	start to deduce nth t	term from information give	en eg $4n+k$ where $k\neq 2$
			A1	cao		
(b)		No (supported)	M1	starts method that c operations	ould lead to a deduction e	g uses inverse
			C1	for a convincing arg	gument eg 34 is 107 so No	O; (108–5)÷3 is not an
4		conclusion	P1	30 ÷ 70 (=0.428)	26 ÷ 60 (=0.4333)	30 ÷ 26 (=1.153)
		(supported)	P1	60 × "0.428…"	70 ×"0.4333…"	60× "1.153"
			C1	for conclusion links	ed to 25.7 mins, 30.3 mile	s or 69.2 mph

Paper 1MA1: 2H			
Question	Working	Answer	Notes
5 (a)		22 ≤ <i>f</i> < 24	B1
(b)		21.9	M1 $x \times f$ using midpoints
			M1 (dep on previous mark) " $x \times f$ " ÷ 40
			A1 accept 22 if working seen
6		9.54	P1 $10^2 - 5^2$ (=75)
			P1 "75" + 4^2 (=91) P1 $\sqrt{(10^2 - 5^2 + 4^2)}$
			P1 $\sqrt{(10^2 - 5^2 + 4^2)}$
			A1 9.53 – 9.54
7 (a)		(1, 4)	B1
(b)		-0.4, 2.4	B1
(c)		3.75	B1 accept 3.7 – 3.8
8		6:2:1	M1 for correct interpretation of any one statement eg. 3:1;1:0.5
			A1 accept any equivalent ratio eg. 3:1:0.5

Paper 1MA	1: 2H		
Question	Working	Answer	Notes
9		203	P1 translate into algebra for rectangle: $4x+4x+3x+4+3x+4$ (=14x+8) or for trapezium: $5x+5x+x-3+7x-3$ (=18x-6)
			P1 equating: eg $18x-6=14x+8$ ($4x=14$)
			A1 solving for x : $x=14/4 = 3.5$ oe
			P1 process to find area: "3.5" \times 3+4 (ft) or "3.5" \times 4 ft
			A1 cao
10 (a)		1.8%	P1 for start to process eg. 2000 × 1.025 (=2050)
			P1 for process to use all given information eg "2050" $\times m^2 = 2124.46$
			or "2050"× $\left(1 + \frac{x}{100}\right)^2 = 2124.46$
			for process to find their unknown eg $m = \sqrt{\frac{2124.46}{2050}} (=1.01799)$
			A1 for 1.79% – 1.8 %
(b)		200	M1 225 ÷ 1.125 oe
			A1

Paper 1MA	1: 2H		
Question	Working	Answer	Notes
11		29°	angle $OTP = 90^{\circ}$, quoted or shown on the diagram M1 method that leads to $180 - (90 + 32)$ or 58 shown at TOP OR that leads to 122 shown at SOT
			 M1 complete method leading to "58"÷2 or (180 – "122") ÷ 2 or 29 shown at TSP C1 for angle of 29° clearly indicated and appropriate reasons linked to
			method eg angle between <u>radius</u> and <u>tangent</u> = 90° and sum of <u>angles</u> in a <u>triangle</u> = 180° ; <u>ext angle</u> of a triangle <u>equal</u> to sum of int <u>opp</u> angles and base <u>angles</u> of an <u>isos</u> triangle are <u>equal</u> or <u>angle</u> at <u>centre</u> = $2x$ angle at <u>circumference</u> or <u>ext angle</u> of a triangle <u>equal</u> to sum of <u>int opp angles</u>
12 (a)		0.4,0.6	B1 correctly placing probs for light A eg 0.4, 0.6
		0.3,0.7,0.8,0.2	B1 correctly placing probs for light B eg 0.3, 0.7, 0.8, 0.2
(b)		B with correct	P1 (ft) eg 0.4×0.3 or 0.6×0.8 or $1-(0.28+0.12)$
		probabilities	P1 both sets of correct probability calculations
			C1 Correct interpretation of results with correct comparable results
13		20	M1 Establishing method linked to proportion eg $d=k \div c$ or $25=k \div 280$
			M1 (dep) substitution eg $d = 7000 \div 350$ or $25 \times 280 \div 350$ oe
			A1 cao

Paper 1MA	1: 2H		
Question	Working	Answer	Notes
14	$(4n^{2}+2n+2n+1)$ $-(2n+1)=$ $4n^{2}+4n+1-2n-1$ $=4n^{2}+2n$ $=2n(2n+1)$	proof (supported)	M1 for 3 out of 4 terms correct in the expansion of $(2n + 1)^2$ or $(2n + 1)\{(2n + 1) - 1\}$ P1 for $4n^2 + 2n$ or equivalent expression in factorised form
			C1 for convincing statement using $2n(2n + 1)$ or $2(2n^2 + n)$ or $4n^2 + 2n$ to prove the result
15		23 90	M1 For a fully complete method as far as finding two correct decimals that, when subtracted, give a terminating decimal (or integer) and showing intention to subtract eg $x = 0.2\dot{5}$ so $10x = 2.5\dot{5}$ then $9x = 2.3$ leading to
			A1 correct working to conclusion
16		$\frac{2x+1}{3x+5}$	M1 for $(3x \pm 5)(2x \pm 1)$ or $(2x + 1)(2x - 1)$ M1 $\frac{1}{(3x \pm 5)(2x \pm 1)} \times (2x + 1)(2x - 1)$ A1
17		4.89	M1 $\frac{40}{360} \times 2 \times \pi \times 7$ oe A1 $4.8 - 4.9$

Paper 1MA1	1: 2H		
Question	Working	Answer	Notes
18		0.229 With Explanation	B1 Finding bound of s: 3.465 or 3.475 or 3.474999 or Finding bound of t: 8.1315 or 8.1325 or 8.132499 P1 Use of "upper bound" and "lower bound" in equation
			P1 Process of choosing correct bounds eg $\frac{\sqrt{3.475}}{8.1315}$ or $\frac{\sqrt{3.465}}{8.1325}$ A1 For 0.2292 and 0.2288 from correct working
			C1 For 0.229 from 0.2292 and 0.2288 since both LB and UB round to 0.229
19 (a)		Sketch	P1 Parabola passes through all three of the points (0, 4), (2,0), (4, 4)
(b)		Sketch	P1 Parabola passes through all three of the points $(-4, -1), (-2,2), (0, -1)$
20		x=0, y=5 x=-4, y=-3	M1 Initial process of substitution eg $x^2 + (2x + 5)^2$ (=25)
		, 1, y 3	M1 for expanding and simplifying eg $x^2 + 4x^2 + 10x + 10x + 25$ (=25)
			M1 Use of factorisation or correct substitution into quadratic formula or completing the square to solve an equation of the form $ax^2 + bx + c = 0$, $a \ne 0$
			A1 correct values of x or y
			C1 $x = 0, x = -4, y = 5, y = -3$ correctly matched x and y values

Paper 1MA	1: 2H		
Question	Working	Answer	Notes
21 (a)		130	P1 start to process eg draw a labelled triangle or use of sine rule $\frac{\sin Q}{8.7} = \frac{\sin 32}{5.2}$
			P1 process to find of Q eg $Q = \sin^{-1} \left[\frac{\sin 32}{5.2} \times 8.7 \right]$
			P1 process to find area of triangle <i>PRQ</i> .
			A1 22.5 – 22.6
(b)			C1 angle <i>PRQ</i> is obtuse so need to find area of two triangles.
22		1361	P1 process using similar triangles to find base of small cone eg. 4 cm used as diameter or 2 cm used as radius
			P1 process to find volume of one cone
			P1 complete process to find volume of frustum P1 complete process to find mass or 1360 – 1362
			A1 1361 or 1360 or 1400